Question

Two blocks are completely submerged in water. Both blocks have the same mass, but different densities.  ...

Two blocks are completely submerged in water. Both blocks have the same mass, but different densities.  
The volume of Block 1 is 0.810 . The volume of Block 2 is 0.340 . The mass of Block 1 is 460.0 kg.
What is the acceleration of Block 2 just after it is released? [Where up is positive.]

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Two blocks A and B with the same volume have been completely Submerged into the water...
Two blocks A and B with the same volume have been completely Submerged into the water . After releasing them block A goes up to the surface and block B goes down to the bottom which of the following statments is true? The weight of the block A is smaller than the weight of block B The buoyant force of block A is greater than the buoyant force of block B The density of block A is smaller than density...
Consider that you have two blocks and they are connected to each other with a spring....
Consider that you have two blocks and they are connected to each other with a spring. Block A has mass 1.00 kg, and block B has mass 3.00 kg. The blocks are compressed with a spring S between them; then the system is released from rest on a level, frictionless surface. The spring, which has negligible mass, is not fastened to either block and drops to the surface after it has expanded. The spring has force constant 723 N/m and...
In the figure, two blocks are shown with an inclined plane. The two blocks are connected...
In the figure, two blocks are shown with an inclined plane. The two blocks are connected by a massless string strung over a massless pulley. The mass of Block #1 is 3.57 kg and that of Block #2 is 11.0 kg. The angle θ of the incline is 43.0 degrees. The plane is NOT smooth and has a coefficient of static friction of 0.570 and a coefficient of kinetic friction of 0.240. Taking the positive direction to be up the...
Two blocks with different mass are attached to either end of a light rope that passes...
Two blocks with different mass are attached to either end of a light rope that passes over a light, frictionless pulley that is suspended from the ceiling. The masses are released from rest, and the more massive one starts to descend. After this block has descended 1.19 m, its speed is 3.18 m/s. If the total mass of the two blocks is 14.5 kg, what is the mass of each block? (Enter your answers from smallest to largest.
Two blocks are positioned on surfaces, each inclined at the same angle of 46.3 degrees with...
Two blocks are positioned on surfaces, each inclined at the same angle of 46.3 degrees with respect to the horizontal. The blocks are connected by a rope which rests on a frictionless pulley at the top of the inclines as shown, so the blocks can slide together. The mass of the black block is 2.25 kg, and the coefficient of kinetic friction for both blocks and inclines is 0.440. Assume static friction has been overcome and that everything can slide....
Two blocks are positioned on surfaces, each inclined at the same angle of 44.9 degrees with...
Two blocks are positioned on surfaces, each inclined at the same angle of 44.9 degrees with respect to the horizontal. The blocks are connected by a rope which rests on a frictionless pulley at the top of the inclines as shown, so the blocks can slide together. The mass of the black block is 5.40 kg, and the coefficient of kinetic friction for both blocks and inclines is 0.460. Assume static friction has been overcome and that everything can slide....
Two blocks are positioned on surfaces, each inclined at the same angle of 51.6 degrees with...
Two blocks are positioned on surfaces, each inclined at the same angle of 51.6 degrees with respect to the horizontal. The blocks are connected by a rope which rests on a frictionless pulley at the top of the inclines as shown, so the blocks can slide together. The mass of the black block is 4.38 kg, and the coefficient of kinetic friction for both blocks and inclines is 0.290. Assume static friction has been overcome and that everything can slide....
Two blocks are positioned on surfaces, each inclined at the same angle of 45.5 degrees with...
Two blocks are positioned on surfaces, each inclined at the same angle of 45.5 degrees with respect to the horizontal. The blocks are connected by a rope which rests on a frictionless pulley at the top of the inclines as shown, so the blocks can slide together. The mass of the black block is 6.46 kg, and the coefficient of kinetic friction for both blocks and inclines is 0.290. Assume static friction has been overcome and that everything can slide....
The figure shows two blocks connected by a cord (of negligible mass) that passes over a...
The figure shows two blocks connected by a cord (of negligible mass) that passes over a frictionless pulley (also of negligible mass). The arrangement is known as Atwood's machine. Block 1 has mass m1 = 2.20 kg; block 2 has mass m2 = 4.60 kg. What are (a) the magnitude of the blocks’ acceleration and (b) the tension in the cord?
Two blocks are positioned on surfaces, each inclined at the same angle of 45.4 degrees with...
Two blocks are positioned on surfaces, each inclined at the same angle of 45.4 degrees with respect to the horizontal. The blocks are connected by a rope which rests on a frictionless pulley at the top of the inclines as shown, so the blocks can slide together. The mass of the black block is 4.22 kg, and the coefficient of kinetic friction for both blocks and inclines is 0.370. Assume static friction has been overcome and that everything can slide....
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT