Question

a. what is the energy of the emitted photon if an electron in the hydrogen atom makes a transition from the n=7 state to the n=2 state?

b. Now, Imagine there is a photon with the same wavelength. What is the speed of this photon?

Answer #1

Which is greater: The energy of a
photon emitted from a hydrogen atom when the electron makes a
transition from the n = 3 to the n = 1 energy
level, or
• the kinetic energy of a 2 gram Ping-Pong ball moving with a
speed of 1 m per hour?

An electron in a hydrogen atom makes a transition from the n = 7
to the n = 2 energy state. Determine the wavelength of the emitted
photon (in nm). Enter an integer.

An electron in a hydrogen atom makes a transition from the n =
68 to the n = 4 energy state. Determine the wavelength of the
emitted photon (in nm).

Calculate the wavelength (in nanometers) of a photon emitted by
a hydrogen atom when its electron drops from the n = 4 to n = 2
state.
Consider the following energy levels of a hypothetical
atom:
E4 −1.61 ×
10−19 J
E3 −7.51 ×
10−19 J
E2 −1.35 ×
10−18 J
E1 −1.45 ×
10−18 J
(a) What is the wavelength of the photon needed to
excite an electron from E1
to E4?
____ ×10m
(b) What is the energy...

1. a. A photon is absorbed by a hydrogen atom causing an
electron to become excited (nf = 6) from the ground state electron
configuration. What is the energy change of the electron associated
with this transition?
b. After some time in the excited state, the electron falls from
the n = 6 state back to its ground state. What is the change in
energy of the electron associated with this transition?
c. When the electron returns from its excited...

What is the wavelength of the photon emitted as the electron in
the hydrogen atom transitions from the 3rd to 2nd level? What is
the frequency of the photon and what is the energy carried by the
photon?
got -6606 A for the first one and I'm not sure if I'm doing it
right

(1)
Part A: If a electron in a hydrogen atom makes a transition from
ground state to n = 8 level what wavelength of light in (nm) would
be needed for the abosorbed photon to cause the transition?
Part B: If the same electron falls to a lower level by emmitting
a photon of light in the Paschen series what is the frequncy of
light in (Hz) thats emitted?
(2) When a photon have a wavelength of 195nm strikes the...

4. [15] Light is emitted from a hydrogen atom as an electron in
the atom jump from the n=9 orbit
to the n=3 orbit.
(a) [7] What is the energy of the emitted photon in eV?
(b) [4] What are the frequency and wavelength of the photon?
(c) [4] In which frequency range (UV, visible, IR) is the
emitted electromagnetic radiation?
Justify your answer.

Light is emitted from a hydrogen atom as an electron in the atom
jump from the n=9 orbit to the n=3 orbit.
What is the energy of the emitted photon in eV?
(b) What are the frequency and wavelength of the photon?
(c) In which frequency range (UV, visible, IR) is the emitted
electromagnetic radiation? Justify your answer.

1. The energy of the electron in the lowest level of the
hydrogen atom (n=1) is -2.179×10-18 J. What is the energy of the
electron in level n=5? -8.716×10-20 J 2.The electron in a hydrogen
atom moves from level n=6 to level n=4.
a) Is a photon emitted or absorbed?
b) What is the wavelength of the photon?

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 5 minutes ago

asked 17 minutes ago

asked 27 minutes ago

asked 43 minutes ago

asked 52 minutes ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago