Question

4) In the diffraction experiment, laser light ( l = 4.65 * 10-4 mm) was sent...

4) In the diffraction experiment, laser light ( l = 4.65 * 10-4 mm) was sent at a slit of width 0.077 mm. How many dark fringes were counted between the two marks 5.06 cm apart, if the distance from the slit to the screen was 93 cm?

Homework Answers

Answer #1

I hope you will like my answer.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
In the single slit diffraction pattern, the distance between the second and fifth dark fringes is...
In the single slit diffraction pattern, the distance between the second and fifth dark fringes is 1 cm and the distance between the slit and the screen is 200 cm. The wavelength of the light used is 600 nm a) Find the width of the slit. (considering that theta is too small, it can be accepted that tan theta = sin theta) b) Find theta click for the third dark fringe.
Light shines through a single slit whose width is 5.6 × 10-4 m. A diffraction pattern...
Light shines through a single slit whose width is 5.6 × 10-4 m. A diffraction pattern is formed on a flat screen located 4.0 m away. The distance between the middle of the central bright fringe and the first dark fringe is 3.3 mm. What is the wavelength of the light?
8. Helium-neon laser light of wavelength 488.2 nm is sent through a 0.298 mm wide single...
8. Helium-neon laser light of wavelength 488.2 nm is sent through a 0.298 mm wide single slit. What is the width of the central maximum on a screen 1.33 m from the slit? Answer in units of mm.
In a double-slit experiment, the slit separation d is 0.5 mm, and the slit width a...
In a double-slit experiment, the slit separation d is 0.5 mm, and the slit width a is 0.1 mm. Consider the interference of the light from the two slits and also the diffraction of the light through each slit. (a) How many bright interference fringes are within the central peak of the diffraction envelope? (b) How many bright fringes are within either of the first side peaks of the diffraction envelope?
A diffraction pattern incident on a screen that is 5.1 m away is produced using light...
A diffraction pattern incident on a screen that is 5.1 m away is produced using light that passes through a single-slit of width 590 um. The central maximum is 1.4 cm wide. If the single-slit is replaced with a double-slit with a slit separation of 0.40 mm and the same light is used, what would be the distance from the central maximum to a fifth dark fringe?
Using a 697-nm wavelength laser, you form the diffraction pattern of a 0.105-mm wide slit on...
Using a 697-nm wavelength laser, you form the diffraction pattern of a 0.105-mm wide slit on a screen. You measure on the screen that the 11th dark fringe is 9.19 cm away from the center of the central maximum. How far is the screen located from the slit?
Monochromatic light of wavelength λ1 is sent through two closely-spaced slits separated by a distance d1...
Monochromatic light of wavelength λ1 is sent through two closely-spaced slits separated by a distance d1 = 1.8 mm. A resulting interference pattern is shown on a screen L1 away. Another monochromatic light source, this one of wavelength λ2, is sent through a diffraction grating toward the same screen, resulting in a second interference pattern. The diffraction grating is a distance L2 from the screen and has 400 lines per mm etched onto it. A) Assume that L1 = L2...
Using a 687 nm wavelength laser, you form the diffraction pattern of a 1.1 mm wide...
Using a 687 nm wavelength laser, you form the diffraction pattern of a 1.1 mm wide slit on a screen. You measure on the screen that the 14th dark fringe is 9.11 cm away from the center of the central maximum. How far is the screen located from the slit? The answer is not 10.419 m
The distance between the first and fifth minima of a single-slit diffraction pattern is 0.400 mm...
The distance between the first and fifth minima of a single-slit diffraction pattern is 0.400 mm with the screen 43.0 cm away from the slit, when light of wavelength 530 nm is used. (a) Find the slit width. (b) Calculate the angle θ of the first diffraction minimum.
The second-order dark fringe in a single-slit diffraction pattern is 1.40 mm from the center of...
The second-order dark fringe in a single-slit diffraction pattern is 1.40 mm from the center of the central maximum. Assuming the screen is 89.2 cm from a slit of width 0.660 mm and assuming monochromatic incident light, calculate the wavelength of the incident light. nm
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT