Question

A uniform, solid sphere of mass 2.6 kg and diameter 33 cm is rotating about its...

A uniform, solid sphere of mass 2.6 kg and diameter 33 cm is rotating about its diameter at 150 rev/min.

A) What is the kinetic energy of rotation?

B) If an additional 1.74 J of energy are supplied to the rotational motion, what is the resulting rate of rotation? Give your answer in rev/min.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An electric sander consisting of a rotating disk of mass 0.75 kg and radius 10 cm...
An electric sander consisting of a rotating disk of mass 0.75 kg and radius 10 cm rotates at 15 rev/sec. When applied to a rough wooden wall the rotation rate decreases by 30.0%. a) What is the final rotational kinetic energy of the rotating disk? b) How much has its rotational kinetic energy [in J] decreased?
QUESTION 1: We can roughly model a gymnastic tumbler as a uniform solid cylinder of mass...
QUESTION 1: We can roughly model a gymnastic tumbler as a uniform solid cylinder of mass 75.0 kg and diameter 1.20 m . A) If this tumbler rolls forward at 0.450 rev/s, how much total kinetic energy does he have? K= B) What percent of his total kinetic energy is rotational? Krot/K= QUESTION 2: A 2.70-kg grinding wheel is in the form of a solid cylinder of radius 0.100 m. A) What constant torque will bring it from rest to...
A solid cylinder of mass 1.6 kg and radius 35 cm is rotating counterclockwise around a...
A solid cylinder of mass 1.6 kg and radius 35 cm is rotating counterclockwise around a vertical axis running through the centers of its circular faces at 560 rev/min. A second solid cylinder of the same mass and radius is rotating clockwise around the same vertical axis running through the centers of its circular faces at 850 rev/min. If the cylinders couple so that they rotate about the same vertical axis, what is the angular velocity (in rev/min) of the...
A 4.8 kg uniform solid sphere has a radius of 32 cm and is initially at...
A 4.8 kg uniform solid sphere has a radius of 32 cm and is initially at rest. It is mounted so that it can rotate about an axis throughout its center of mass. If a constant net torque of 17Nm is applied to the sphere (about its center of mass), then find the power applied to the sphere 2.4s after it begins rotating.
The Earth can be approximated as a sphere of uniform density, rotating on its axis once...
The Earth can be approximated as a sphere of uniform density, rotating on its axis once a day. The mass of the Earth is 5.97×1024 kg , the radius of the Earth is 6.38×106 m , and the period of rotation for the Earth is 24.0 hrs . What is the rotational kinetic energy of the Earth?Express your answer in joules to three significant figures A)Where did the rotational kinetic energy of the Earth come from? . B)Select the option...
otation, Translation, and Kinetic Energy: A point on the edge of a 4 kg rotating solid...
otation, Translation, and Kinetic Energy: A point on the edge of a 4 kg rotating solid cylindrical disk ( I = 1 2 M R 2) of radius 40 cm moves through an angle of 4 rads in 2 seconds. Give all of your answers to 3 significant digits. Part 1. What is the: Angular velocity, Period, Frequency, Linear Velocity of the point on the edge of the disk? rad/s s hz m/s Part 2. What length (in meters) has...
A car is designed to get its energy from a rotating flywheel in the shape of...
A car is designed to get its energy from a rotating flywheel in the shape of a uniform, solid disk of radius 0.550 m and mass 560 kg. Before a trip, the flywheel is attached to an electric motor, which brings the flywheel's rotational speed up to 5.10 ✕ 103 rev/min. a)Find the kinetic energy stored in the flywheel (in J). b)If the flywheel is to supply energy to the car as a 12.0 hp motor would, find the length...
An 8.20 cm-diameter, 390g solid sphere is released from rest at the top of a 2.00m...
An 8.20 cm-diameter, 390g solid sphere is released from rest at the top of a 2.00m long, 19.0 degree incline. It rolls, without slipping, to the bottom. 1) What is the sphere's angular velocity at the bottom of the incline? 2) What fraction of its kinetic energy is rotational?
A solid, cylindrical grinding wheel has mass 2.37 kg and diameter 11.0 cm. It has an...
A solid, cylindrical grinding wheel has mass 2.37 kg and diameter 11.0 cm. It has an angular speed of 1224 rev/min. when the motor that turns it is shut off. The wheel slows uniformly to a stop after 48 seconds due to frictional forces. Find: a. angular accleleration b. number of revolutions during the 48 seconds c. frictional torque that caused the wheel to slow to a stop d. wheels initial kinetic energy e. frictional power
A uniform, solid sphere of radius 5.75 cm 5.75 cm and mass 3.25 kg 3.25 kg...
A uniform, solid sphere of radius 5.75 cm 5.75 cm and mass 3.25 kg 3.25 kg starts with a purely translational speed of 1.25 m/s 1.25 m/s at the top of an inclined plane. The surface of the incline is 2.25 m 2.25 m long, and is tilted at an angle of 29.0 ∘ 29.0∘ with respect to the horizontal. Assuming the sphere rolls without slipping down the incline, calculate the sphere's final translational speed ? 2 v2 at the...