Question

Two identical small, charged spheres, each having a mass of 30 g, hang in equilibrium as...

Two identical small, charged spheres, each having a mass of 30 g, hang in equilibrium as shown in the figure. The length Lof each string is 0.7 m, and the angle theta is 50. Find the magnitude of the charge on each sphere in (nC).(ke=9*109N.m2/C2)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Two identical small, charged spheres, each having a mass of 30 g, hang in equilibrium as...
Two identical small, charged spheres, each having a mass of 30 g, hang in equilibrium as shown in the figure. The length L of each string is 0.3 m, and the angle theta is 50. Find the magnitude of the charge on each sphere in (nC).(ke= 9*109 N.m2/C2)
Two small metallic spheres, each of mass = 0.214g, are suspended as pendulums by light strings...
Two small metallic spheres, each of mass = 0.214g, are suspended as pendulums by light strings of length L as shown in the figure below. The spheres are given the same electric charge of 6.8 nC, and they come to equilibrium when each string is at an angle of ? = 5.30
Two identical tiny spheres of mass m =2g and charge q hang from a non-conducting strings,...
Two identical tiny spheres of mass m =2g and charge q hang from a non-conducting strings, each of length L = 10cm. At equilibrium, each string makes and angle θ =50 with the vertical. Find the size of the charge on each spere.
Consider the arrangement of three small charged spheres, each of mass 14 g, shown in the...
Consider the arrangement of three small charged spheres, each of mass 14 g, shown in the figure. The spheres have equal charges of 65 nC and are positioned on the vertices of an equilateral triangle, with side length 37 cm.
Two hard rubber spheres, each of mass m = 16.0 g, are rubbed with fur on...
Two hard rubber spheres, each of mass m = 16.0 g, are rubbed with fur on a dry day and are then suspended with two insulating strings of length L = 4.70 cm whose support points are a distance d = 3.24 cm from each other as shown in the figure below. During the rubbing process, one sphere receives exactly twice the charge of the other. They are observed to hang at equilibrium, each at an angle of θ =...
1-The figure below shows two identical (and small) conducting spheres connected to each other by a...
1-The figure below shows two identical (and small) conducting spheres connected to each other by a string of length L = 3.0 meters. Presently the charge on each small sphere is Q = +0.4 mC, and the string will break when the tension in the string equals or exceeds 1000N. A charge q is now placed on the small sphere on the right. If the string connecting the two spheres is conducting, determine the minimum value of q so that...
Two identical conducting small spheres are placed with their centers 0.250 m apart. One is given...
Two identical conducting small spheres are placed with their centers 0.250 m apart. One is given a charge of 12.0 nC, and the other is given a charge of -16.0 nC. (a) Find the electric force exerted on one sphere by the other. Magnitude NDirection (b) The spheres are connected by a conducting wire. Find the electric force between the two after equilibrium has occurred. Magnitude NDirection
Two identical 7.10-g metal spheres (small enough to be treated as particles) are hung from separate...
Two identical 7.10-g metal spheres (small enough to be treated as particles) are hung from separate 600-mm strings attached to the same nail in a ceiling. Surplus electrons are added to each sphere, and then the spheres are brought in contact with each other and released. Their equilibrium position is such that each string makes a 11.0 degree angle with the vertical. Part A: How many surplus electrons are on each sphere?
Two metal spheres of identical mass m = 3.00 g are suspended by light strings 0.500...
Two metal spheres of identical mass m = 3.00 g are suspended by light strings 0.500 m in length. The left-hand sphere carries a charge of 0.865 µC, and the right-hand sphere carries a charge of 1.41 µC. What is the equilibrium separation between the centers of the two spheres?
Two metal spheres of identical mass m = 4.40 g are suspended by light strings 0.500...
Two metal spheres of identical mass m = 4.40 g are suspended by light strings 0.500 m in length. The left-hand sphere carries a charge of 0.745 µC, and the right-hand sphere carries a charge of 1.47 µC. What is the equilibrium separation between the centers of the two spheres?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT