Question

A lazy Susan consists of a heavy plastic disk mounted on a frictionless bearing resting on...

A lazy Susan consists of a heavy plastic disk mounted on a frictionless bearing resting on a vertical shaft through its center. The cylinder has a radius R = 10 cm and mass M = 0.31 kg. A cockroach (mass m = 0.015 kg) is on the lazy Susan, at a distance of 10 cm from the center. Both the cockroach and the lazy Susan are initially at rest. The cockroach then walks along a circular path concentric with the axis of the lazy Susan at a constant distance of 10 cm from the axis of the shaft. If the speed of the cockroach with respect to the lazy Susan is 0.01 m/s, what is the speed of the cockroach with respect to the room?

mm/s

Homework Answers

Answer #1

Angular momentum of lady Susan = Iw = (1/2)MR2*w
We know that (w) = v/R = 0.01/(0.1) = 0.1 rad/s
Angular momentum of lady Susan = (1/2)*(0.31)*(0.1)2*0.1 = 1.55*10-4
Relative angular speed of cockroach with floor
vf = v -wr
Angular momentum of the cockroach = I2*[(v/R)-w]= mR2*[(v/R)-w]
Now using conservation of momentum
mR2*[(v/R)-w] = (1/2)MR2*w
0.015*[(0.01/0.1) - w2] = (1/2)*0.31*(0.1)

w = 0.009 rad/s
Now the relative veloctiy
vf = v - wR
= 0.01 - [0.009*0.1] = 9.1*10-3 m/s
= 9.1 mm/s

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A Texas cockroach of mass 0.177 kg runs counterclockwise around the rim of a lazy Susan...
A Texas cockroach of mass 0.177 kg runs counterclockwise around the rim of a lazy Susan (a circular disk mounted on a vertical axle) that has a radius 14.1 cm, rotational inertia 5.88 x 10-3 kg·m2, and frictionless bearings. The cockroach's speed (relative to the ground) is 2.73 m/s, and the lazy Susan turns clockwise with angular velocity ω0 = 3.38 rad/s. The cockroach finds a bread crumb on the rim and, of course, stops. (a) What is the angular...
A Texas cockroach of mass 0.108 kg runs counterclockwise around the rim of a lazy Susan...
A Texas cockroach of mass 0.108 kg runs counterclockwise around the rim of a lazy Susan (a circular disk mounted on a vertical axle) that has a radius 12.4 cm, rotational inertia 4.19 x 10-3 kg·m2, and frictionless bearings. The cockroach's speed (relative to the ground) is 2.81 m/s, and the lazy Susan turns clockwise with angular velocity ω0 = 3.56 rad/s. The cockroach finds a bread crumb on the rim and, of course, stops. (a) What is the angular...
A Texas cockroach of mass 0.100 kg runs counterclockwise around the rim of a lazy Susan...
A Texas cockroach of mass 0.100 kg runs counterclockwise around the rim of a lazy Susan (a circular disk mounted on a vertical axle) that has a radius 15.1 cm, rotational inertia 4.86 x 10-3 kg·m2, and frictionless bearings. The cockroach's speed (relative to the ground) is 1.88 m/s, and the lazy Susan turns clockwise with angular velocity ω0 = 2.56 rad/s. The cockroach finds a bread crumb on the rim and, of course, stops. (a) What is the angular...
A Texas cockroach of mass 0.165 kg runs counterclockwise around the rim of a lazy Susan...
A Texas cockroach of mass 0.165 kg runs counterclockwise around the rim of a lazy Susan (a circular disk mounted on a vertical axle) that has a radius 18.3 cm, rotational inertia 5.16 x 10-3 kg·m2, and frictionless bearings. The cockroach's speed (relative to the ground) is 2.61 m/s, and the lazy Susan turns clockwise with angular velocity ω0 = 3.07 rad/s. The cockroach finds a bread crumb on the rim and, of course, stops. (a) What is the angular...
A horizontal platform in the shape of a circular disk rotates on a frictionless bearing about...
A horizontal platform in the shape of a circular disk rotates on a frictionless bearing about a vertical axle through the center of the disk. The platform has a mass of 127.0 kg, a radius of 2.00 m, and a rotational inertia of 5.08×102 kgm2 about the axis of rotation. A student of mass 66.0 kg walks slowly from the rim of the platform toward the center. If the angular speed of the system is 1.31 rad/s when the student...
A heavy disk, free to rotate on its axis, is mounted in a light framework. If...
A heavy disk, free to rotate on its axis, is mounted in a light framework. If the radius of the disk is 0.2 m and its angular velocity is 600 rad s-1, find the angular velocity of precession when it is supported with its axis horizontal at a point 0.15 m from the center of mass of the disk.
A horizontal platform in the shape of a circular disk rotates on a frictionless bearing about...
A horizontal platform in the shape of a circular disk rotates on a frictionless bearing about a vertical axle through the center of the disk. The platform has a radius of 1.80 m and a rotational inertia of 347 kg·m2 about the axis of rotation. A 58.4 kg student walks slowly from the rim of the platform toward the center. If the angular speed of the system is 1.49 rad/s when the student starts at the rim, what is the...
A horizontal platform in the shape of a circular disk rotates on a frictionless bearing about...
A horizontal platform in the shape of a circular disk rotates on a frictionless bearing about a vertical axle through the center of the disk. The platform has a radius of 4.67 m and a rotational inertia of 342 kg·m2 about the axis of rotation. A 70.8 kg student walks slowly from the rim of the platform toward the center. If the angular speed of the system is 2.28 rad/s when the student starts at the rim, what is the...
A playground ride consists of a disk of mass M = 43 kg and radius R...
A playground ride consists of a disk of mass M = 43 kg and radius R = 2.2 m mounted on a low-friction axle. A child of mass m = 29 kg runs at speed v = 2.1 m/s on a line tangential to the disk and jumps onto the outer edge of the disk. a) Calculate the change in linear momentum of the system consisting of the child plus the disk (but not including the axle), from just before...
A very thin 2.0-kg disk with a diameter of 80 cm is mounted horizontally to rotate...
A very thin 2.0-kg disk with a diameter of 80 cm is mounted horizontally to rotate freely about a central vertical axis. On the edge of the disk, sticking out a little, is a small, essentially massless, tab or "catcher." A 2.0-g wad of clay is fired at a speed of 14.0 m/s directly at the tab perpendicular to it and tangent to the disk. The clay sticks to the tab, which is initially at rest, at a distance of...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT