Question

A 120 kg lineman moving west tackles an 80kg football fullback moving east at 8 m/s....

A 120 kg lineman moving west tackles an 80kg football fullback moving east at 8 m/s. After the collision, the 80kg fullback move east at 2m/s and the 120kg lineman moves east at 3m/s. What was the velocity(speed and direction) of the 120kg lineman before the collision ?

Homework Answers

Answer #1

Answer:

Given, Initial velocity of 80 kg football is u2 = 8 m/s, initial velocity of 120 kg lineman is u1 = ?

Final velocities are v1 = 3 m/s and v2 = 2 m/s.

According to conservation of linear momentum, m1u1 + m2u2 = m1v1 + m2v2.

From this, v1 = (m1v1 + m2v2 - m2u2) / m1 = [ (120 kg) (3 m/s) + (80 kg) (2 m/s) - (80 kg) (8 m/s) ] / (120 kg)

Therefore, initial velocity of 120 kg is u1 = (360 + 160 - 640) / 120 m/s = -1 m/s.

Magnitude of u1 is 1 m/s and the direction is toward west (i.e., opposite to east).

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 85 kg fullback moving east with a speed of 6.0 m/s is tackled by a...
A 85 kg fullback moving east with a speed of 6.0 m/s is tackled by a 98 kg opponent running north at 2.0 m/s. (a) If the collision is perfectly inelastic, calculate the velocity of the players just after the tackle. m/s (b) If the collision is perfectly inelastic, calculate the kinetic energy lost as a result of the collision. J Can you account for the missing energy?
A 88 kg fullback moving east with a speed of 6.0 m/s is tackled by a...
A 88 kg fullback moving east with a speed of 6.0 m/s is tackled by a 100 kg opponent running north at 2.0 m/s. If the collision is perfectly inelastic, calculate each of the following. (a) the velocity of the players just after the tackle _____ m/s (b) the kinetic energy lost as a result of the collision _____J Can you account for the missing energy?
A 2-kg object is moving east at 9 m/s when it collides with a 8-kg object...
A 2-kg object is moving east at 9 m/s when it collides with a 8-kg object that is initially at rest. After the completely elastic collision, the larger object moves east at 1 m/s. Find the final velocity of the smaller object after the collision. (East is defined as positive. Indicate the direction with the sign of your answer.) m/s
On a very muddy football field, a 109-kg linebacker tackles an 82-kg halfback. Immediately before the...
On a very muddy football field, a 109-kg linebacker tackles an 82-kg halfback. Immediately before the collision, the linebacker is slipping with a velocity of 9.0 m/s north and the halfback is sliding with a velocity of 6.3 m/s east. What is the velocity (magnitude and direction) at which the two players move together immediately after the collision? magnitude ------m/s direction --------° north of east
A 89.5-kg fullback running east with a speed of 5.05 m/s is tackled by a 95.5-kg...
A 89.5-kg fullback running east with a speed of 5.05 m/s is tackled by a 95.5-kg opponent running north with a speed of 3.10 m/s. (a) Explain why the successful tackle constitutes a perfectly inelastic collision. (b) Calculate the velocity of the players immediately after the tackle (I HAVE THE ANSWER TO B) magnitude: 2.91 ?direction: 33.25 m/s north of east (c) Determine the mechanical energy that disappears as a result of the collision. J Account for the missing energy....
A 2500 kg car moving east at 10.0 m/s collides with a 3000 kg car moving...
A 2500 kg car moving east at 10.0 m/s collides with a 3000 kg car moving north. The cars stick together and move as a unit after the collision, at an angle of 47.0° north of east and at a speed of 6.66 m/s. Find the velocity of the 3000 kg car before the collision. m/s north
Problem 7.26 A 0.250-kg ice puck, moving east with a speed of 5.62 m/s , has...
Problem 7.26 A 0.250-kg ice puck, moving east with a speed of 5.62 m/s , has a head-on collision with a 0.900-kg puck initially at rest. Assume that the collision is perfectly elastic. Part A What is the speed of the 0.250-kg puck after the collision? Express your answer to three significant figures and include the appropriate units. v1 = Part B What is the direction of the velocity of the 0.250-kg puck after the collision? What is the direction...
A 2,500-kg car moving east at 10.0 m/s collides with a 3,000-kg car moving north. The...
A 2,500-kg car moving east at 10.0 m/s collides with a 3,000-kg car moving north. The cars stick together and move as a unit after the collision, at an angle of 35.0 degrees north of east and at a speed of 5.55 m/s. Find the speed of the 3,000-kg car before the collision. __________ m/s north
I ONLY NEED PART B ANSWERED A 77.0-kg fullback running east with a speed of 5.40...
I ONLY NEED PART B ANSWERED A 77.0-kg fullback running east with a speed of 5.40 m/s is tackled by a 79.0-kg opponent running north with a speed of 3.00 m/s. (a) Explain why the successful tackle constitutes a perfectly inelastic collision. ___________________ (b) Calculate the velocity of the players immediately after the tackle. magnitude=_____ m/s direction=______ ° north of east HINT: Find the total momentum of the two players before the collision and use conservation of momentum to find...
A 3.20-kg object is moving east at 4.50 m/s when it collides with a 6.00-kg object...
A 3.20-kg object is moving east at 4.50 m/s when it collides with a 6.00-kg object that is initially at rest. After the completely elastic collision, the larger object moves east at 3.13 m/s. 1) What is the final velocity of the smaller object after the collision? Assume that the positive direction is to the east.(Express your answer to three significant figures.)
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT