Question

A particle of rest mass energy 18 MeV decays from rest into an electron. (a) Assuming...

A particle of rest mass energy 18 MeV decays from rest into an electron.

(a) Assuming that all the lost mass is converted into the electron’s kinetic energy, find ? for the electron.

(b) What is the electron’s velocity?

Please show all steps and equations used

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
In a head-on collision of an electron of kinetic energy of 2.044 MeV with a positron...
In a head-on collision of an electron of kinetic energy of 2.044 MeV with a positron at rest, the two particles are replaced by two photons of equal energy. If each photon is traveling at an angles θ with respect to the electron’s direction of motion, What is the energy E, momentum p (you can leave the answer in terms of c) and angle of θ of each photon? (For electron and positron mc2 = 0.511 MeV)
A muon is an elementary particle that resembles a heavy electron. It has a rest mass...
A muon is an elementary particle that resembles a heavy electron. It has a rest mass of 105.7 MeV/c2 compared to the electron rest mass of 0.511 MeV/c2. In frame, S, the muon has a velocity of   0.85 c ms?1 . In frame, S', the muon is found to have a velocity of     0.65 c ms?1 . The muon velocity vectors in either frame and the velocity of relative motion of frame S and S' are all parallel to the...
What is the Kinetic Energy of an electron traveling at 0.8c. Its rest mass energy is...
What is the Kinetic Energy of an electron traveling at 0.8c. Its rest mass energy is 0.511 Mev. (b) What is the total energy? (c) What is the momentum ? Mass = 9.11 x 10^-31
A particle has rest energy 1872 MeV and mean lifetime 8.2 × 10−11 s. It is...
A particle has rest energy 1872 MeV and mean lifetime 8.2 × 10−11 s. It is created and decays in a particle track detector. It leaves a track 35 mm long. (a) What is the (i) speed of the particle in terms of c? (ii) momentum of the particle? (b) How much energy is needed to produce the particle? (c) Is the particle massless? Justify your answer. (d) Supported by evidence, give your arguments to the beliefs that the (i)...
4.The kinetic energy and the momentum of a particle deduced from measurements on its track in...
4.The kinetic energy and the momentum of a particle deduced from measurements on its track in nuclear photographic emulsions are 250MeV and 368 MeV/c, respectively. Determine the mass of the particle in terms of electron mass? 5. A particle of rest mass m with kinetic energy 3mc2 makes a completely elastic collision with an identical particle that is at rest, forming a new particle of rest mass M. Determine mass M?
A subatomic particle X spontaneously decays into two particles, A and B, each of rest energy...
A subatomic particle X spontaneously decays into two particles, A and B, each of rest energy 1.40 × 102 MeV. The particles fly off in opposite directions, each with speed 0.827c relative to an inertial reference frame S. Use energy conservation to determine the rest energy of particle X. thank you for your help
A electron is accelerated to a kinetic energy of 100 MeV at the end of a...
A electron is accelerated to a kinetic energy of 100 MeV at the end of a linac and then drifts 1.45 m to a target in the laboratory a) What is the distance from the end of the linac to the target in the rest frame of the electron? b) As measured in the laboratory, what is the velocity of the electron and how much time does it take for the electron to hit the target after it exits the...
a) Consider an alpha-particle of mass mα and kinetic energy 4.7 MeV. Calculate its velocity and...
a) Consider an alpha-particle of mass mα and kinetic energy 4.7 MeV. Calculate its velocity and compare it to the speed of light. [2 marks] b) Calculate the de Broglie wavelength of the alpha-particle in a) and express your result in fm (femtometer).
An electron and an antielectron (positron) each have a rest energy of 0.511 MeV , or...
An electron and an antielectron (positron) each have a rest energy of 0.511 MeV , or approximately 8.2×10-14 J . When an electron and a positron are both stationary and located next to each other during an annihilation process, their mass energy converts to electromagnetic energy released as photons, electromagnetic particles that have momentum but no mass and that travel at the speed of light. What is the minimum number of photons that could be released, and how much energy...
An electron has a kinetic energy K of 1 MeV and is incident on a proton...
An electron has a kinetic energy K of 1 MeV and is incident on a proton at rest in the laboratory. Calculate the speed of the CMS frame (The centre of mass, or centre of momentum, (CMS) frame is that in which the sum of the momenta (i.e., the total momentum) of all particles is zero) moving relative to the laboratory. (a) Express the initial energies Ee, Ep and initial momenta pe, pp of the electron and proton respectively (with...