Question

QUESTION 10 A student took a laser with wavelength 532 nm and pointed the beam at...

QUESTION 10

A student took a laser with wavelength 532 nm and pointed the beam at a fiber. The student then observed the diffraction pattern on a paper positioned 85.4 cm past the fiber. The central maximum of the diffraction pattern had a width of 47.8 mm. What is the diameter of the fiber in micrometers (µm)? (State the answer in micrometers with 2 digits right of decimal.)

QUESTION 11

A microscope has an objective lens which is circular and has a focal length of 26.8 mm and a diameter of 7.50 mm. What is the smallest feature in micrometers (μm) that can be resolved with the microscope when specimens are observed with light of wavelength 477 nm? (State answer in micrometers with 2 digits right of decimal.)

QUESTION 12

A student used a diffraction grating with 723 lines/mm to determine an unknown wavelength of light. The light passed through the grating, and the pattern was observed on a paper placed 90.0 cm past the grating. The distance from the center bright spot to the second bright spot from the center was measured to be 73.6 cm. What was the wavelength of light in nanometers (nm)? (State answer in nanometers as a whole number with no digits right of decimal.)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Laser light of wavelength 625 nm is incident on a circular aperture which has a diameter...
Laser light of wavelength 625 nm is incident on a circular aperture which has a diameter of 0.063 mm. A diffraction pattern is observed on a screen which is placed 53 cm from the aperture. Give your answer to at least three significant figures. Answer must be accurate to 1%. 1.)What is the diffraction angle, θ, of the first diffraction minimum? 2.)What is the distance, on the screen, from the center of the central bright spot to the first dark...
You have a red laser with a wavelength of 640 nm (1 nm = 10^-9 m)....
You have a red laser with a wavelength of 640 nm (1 nm = 10^-9 m). This laser is passed through diffraction grating with 1000 lines per mm. If the grating is 20 cm away from a screen, how far from the central bright dot will the next bright dot appear?
Light of wavelength 532 nm illuminates a pair of slits separated by a distance of d=...
Light of wavelength 532 nm illuminates a pair of slits separated by a distance of d= 0.42 mm. An interference pattern is observed on a screen placed a distance L away (L>>d). You may use the small angle approximation for this problem. What is the distance L if the width of the central bright spot of the interference pattern is delta(y) = 1.9 cm? The answer is supposed to be 15 m but i cant figure out how to get...
7. A blue laser with a wavelength of 480 nm and a yellow laser with a...
7. A blue laser with a wavelength of 480 nm and a yellow laser with a wave length of 550 nm illuminates a diffraction grating with 100 rulings per mm. A screen 2 m wide is placed 2 m from the diffraction grating. A. How many maxima are observed on the screen from the blue laser? B. What is the distance between the first maxima of the blue and green light? Please explain!
A laser beam of wavelength 650 nm is incident on a single slit of width 0.04...
A laser beam of wavelength 650 nm is incident on a single slit of width 0.04 mm. The diffraction pattern is formed on a screen 1.5 m from the slit. What is the size of the central spot? a) .048 b) 244cm c) 488 cm d) 2.44cm e) 4.88cm
I rate best answer :) ± Fringes from Different Interfering Wavelengths Coherent light with wavelength 592...
I rate best answer :) ± Fringes from Different Interfering Wavelengths Coherent light with wavelength 592 nm passes through two very narrow slits, and the interference pattern is observed on a screen a distance of 3.00 m from the slits. The first-order bright fringe is a distance of 4.84 mm from the center of the central bright fringe. Part A For what wavelength of light will the first-order dark fringe (the first dark fringe next to a central maximum) be...
When laser light of wavelength 633.0 nm passes through a diffraction grating, the first bright spots...
When laser light of wavelength 633.0 nm passes through a diffraction grating, the first bright spots occur at ± 16.8 ∘ from the central maximum. Part A What is the line density (in lines/cm) of this grating? Part B How many additional pares of bright spots are there beyond the first bright spots?
You put a grating etched with 300 lines/mm in front of a laser of wavelength 800...
You put a grating etched with 300 lines/mm in front of a laser of wavelength 800 nm. You place a screen 20 cm away from the grating in the path of the diffracted light. How far away from the center of the pattern is the 3rd order (m=3) bright fringe? Give your answer in centimeters. There is no need to enter units.
Red light of wavelength 633 nm from a helium-neon laser passes through a slit 0.350 mm...
Red light of wavelength 633 nm from a helium-neon laser passes through a slit 0.350 mm wide. The diffraction pattern is observed on a screen 2.55 m away. Define the width of a bright fringe as the distance between the minima on either side. a) What is the width of the central bright fringe? b) What is the width of the first bright fringe on either side of the central one?
a) A laser beam is incident on a single slit of width 0.020 mm. On a...
a) A laser beam is incident on a single slit of width 0.020 mm. On a viewing screen placed 1.20 m away from the slit, the first minimum is observed at a distance 2.40 cm from the center of the screen. What is the wavelength of the laser used (in nm)? [6] (b) Laser light of wavelength 480 nm is incident on a transmission grating with 2000 groves/cm. How far away from the center of a screen placed at a...