Question

A block of mass m = 4.5 kg is attached to a spring with spring constant...

A block of mass m = 4.5 kg is attached to a spring with spring constant k = 610 N/m. It is initially at rest on an inclined plane that is at an angle of θ = 29° with respect to the horizontal, and the coefficient of kinetic friction between the block and the plane is μk = 0.13. In the initial position, where the spring is compressed by a distance of d = 0.19 m, the mass is at its lowest position and the spring is compressed the maximum amount. Take the initial gravitational energy of the block as zero.

b  If the spring pushes the block up the incline, what distance, L in meters, will the block travel before coming to rest? The spring remains attached to both the block and the fixed wall throughout its motion.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A block of mass m = 3.3 kg is on an inclined plane with a coefficient...
A block of mass m = 3.3 kg is on an inclined plane with a coefficient of friction μ1 = 0.39, at an initial height h = 0.53 m above the ground. The plane is inclined at an angle θ = 44°. The block is then compressed against a spring a distance Δx = 0.13 m from its equilibrium point (the spring has a spring constant of k1 = 35 N/m) and released. At the bottom of the inclined plane...
A block of mass m = 0.53 kg attached to a spring with force constant 119...
A block of mass m = 0.53 kg attached to a spring with force constant 119 N/m is free to move on a frictionless, horizontal surface as in the figure below. The block is released from rest after the spring is stretched a distance A = 0.13 m. (Indicate the direction with the sign of your answer. Assume that the positive direction is to the right.) The left end of a horizontal spring is attached to a vertical wall, and...
A block of mass 2.0 kg is attached to a spring whose spring constant is ?...
A block of mass 2.0 kg is attached to a spring whose spring constant is ? = 8 N/m. The block slides on an incline with θ = 37 . The block starts at rest with the spring unextended before sliding down a distance of 0.5 m down the incline. Assume that µk = 0.20. What is the velocity of the block as soon as it slides 0.5 m down the incline? (Ans: ?? = 1.825 ?/? )
A wooden block with mass 1.30 kg is placed against a compressed spring at the bottom...
A wooden block with mass 1.30 kg is placed against a compressed spring at the bottom of a slope inclined at an angle of 35.0 ∘ (point A). When the spring is released, it projects the block up the incline. At point B, a distance of 7.95 m up the incline from A, the block is moving up the incline at a speed of 5.75 m/s and is no longer in contact with the spring. The coefficient of kinetic friction...
A 2.90 kg block on a horizontal floor is attached to a horizontal spring that is...
A 2.90 kg block on a horizontal floor is attached to a horizontal spring that is initially compressed 0.0340 m . The spring has force constant 850 N/m . The coefficient of kinetic friction between the floor and the block is 0.42 . The block and spring are released from rest and the block slides along the floor. Part A What is the speed of the block when it has moved a distance of 0.0190 m from its initial position?...
A block of mass m = 0.79 kg is attached to a spring with force constant...
A block of mass m = 0.79 kg is attached to a spring with force constant 123.0 N/m. The block is free to move on a frictionless, horizontal surface as shown in the figure. The block is released from rest after the spring is stretched a distance A = 0.10 m to the right. What is the potential energy of the spring/block system 0.25 s after releasing the block?
An inclined plane of angle θ = 20.0° has a spring of force constant k =...
An inclined plane of angle θ = 20.0° has a spring of force constant k = 495 N/m fastened securely at the bottom so that the spring is parallel to the surface as shown in the figure below. A block of mass m = 2.29 kg is placed on the plane at a distance d = 0.297 m from the spring. From this position, the block is projected downward toward the spring with speed v = 0.750 m/s. By what...
An inclined plane of angle θ = 20.0° has a spring of force constant k =...
An inclined plane of angle θ = 20.0° has a spring of force constant k = 520 N/m fastened securely at the bottom so that the spring is parallel to the surface as shown in the figure below. A block of mass m = 2.41 kg is placed on the plane at a distance d = 0.288 m from the spring. From this position, the block is projected downward toward the spring with speed v = 0.750 m/s. By what...
A block of mass m=12 kg is released from rest on an incline with a coefficient...
A block of mass m=12 kg is released from rest on an incline with a coefficient of kinetic friction 0.25, and at an angle θ=30◦ . Below the block is a spring that can be compressed 2.5 cm by a force of 280 N. The block momentarily stops when it compresses the spring by 5.5 cm. (a) How far does the block move down the incline from its rest position to this stopping point? (b) What is the speed of...
A spring is attached to a wall, and a 0.50 kg block is attached to the...
A spring is attached to a wall, and a 0.50 kg block is attached to the other end of the spring. The spring-block system sits on a frictionless surface so that the block is able to oscillate without losing energy. The spring constant of the spring is k = 25 N/m. The block is pushed so that it compresses the spring by 20 cm beyond its equilibrium position. The block is released from rest at exactly the same time as...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT