Question

In an Isothermal process the temperature stays thes same as the volume and pressure are allowed...

In an Isothermal process the temperature stays thes same as the volume and pressure are allowed to change. In such a proces the work is found by W=nRTln (VfVi), with n as the number of moles, R as the constant 8.31 J/mole*K . How much work is done in an isothermal process of an ideal gas starting at a pressure of 225 kPa, and 0.0370 m3 volume as it expands to a volume of 0.199 m3?

   

If the gas is then compressed isobarically back to its initial volume and finally returns to the initial pressure and volume ischorically. What is the total work done in this cycle?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
a.) In an Isothermal process the temperature stays thes same as the volume and pressure are...
a.) In an Isothermal process the temperature stays thes same as the volume and pressure are allowed to change. In such a proces the work is found by W=nRTln (VfVi), with n as the number of moles, R as the constant 8.31 J/mole*K . How much work is done in an isothermal process of an ideal gas starting at a pressure of 2.10E2 kPa, and 0.0360 m3 volume as it expands to a volume of 0.165 m3? b.) If the...
28 moles of an ideal gas with a molar specific heat at constant volume of cv=3.2R...
28 moles of an ideal gas with a molar specific heat at constant volume of cv=3.2R is initially in state "A" at pressure 73390 Pa and volume 1.0 m3. The gas then expands isobarically to state "B" which has volume 2.6?3m3. The gas then cools isochorically to state "C". The gas finally returns from state "C" to "A" via an isothermal process. What is the adiabatic constant γ for this gas? What is Q during the expansion from "A" to...
One mole of an ideal gas at atmospheric pressure expands isobarically from a volume of 1m3...
One mole of an ideal gas at atmospheric pressure expands isobarically from a volume of 1m3 to a volume of 2m3. 1 - Find the initial and final temperatures of the gas 2 - Find the work done by the gas 3 - Find the heat added to the gas
a machinr carries 2 moles of an ideal diatomic gas thay is initially at a volume...
a machinr carries 2 moles of an ideal diatomic gas thay is initially at a volume of 0.020 m^3 and a temperature of 37 C is heated to a constant volumes at the temperature of 277 C is allowed to expand isothermally at the initial pressure, and finally it is compressed isobarically to its original volume, pressure and temperature. 1. determine the amount of heat entering the system during the cycle. 2. calculate the net work affected by the gas...
A gas is allowed to expand isobarically from .65 m3 to 1.70 m3. There are 39...
A gas is allowed to expand isobarically from .65 m3 to 1.70 m3. There are 39 moles of the gas at a pressure of 240 kPa. Assume the gas is monatomic ideal. a. Sketch a PV diagram. b. How much work was done by the gas during the expansion? c. What were the initial and final temperatures of the gas? d. Determine the change in the internal energy of the gas and the heat added to the gas?
. A container has n = 3 moles of a monoatomic ideal gas at a temperature...
. A container has n = 3 moles of a monoatomic ideal gas at a temperature of 330 K and an initial pressure of three times the atmospheric pressure. The gas is taken through the following thermodynamic cycle: 1.- The gas is expanded isobarically (constant pressure) to Vf = 2.5∙Vi. 2.- The pressure of the gas is decreased isochorically (constant volume) to half of the initial value. 3.- The gas is compressed isobarically back to its initial volume. 4.- The...
Gas in a container is at a pressure of 1.2 atm and a volume of 6.0...
Gas in a container is at a pressure of 1.2 atm and a volume of 6.0 m3. (a) What is the work done on the gas if it expands at constant pressure to twice its initial volume? ___J (b) What is the work done on the gas if it is compressed at constant pressure to one-quarter of its initial volume? ___J
A heat engine composed of 1.6 moles of an ideal, monotonic gas is initially at 350...
A heat engine composed of 1.6 moles of an ideal, monotonic gas is initially at 350 K and 1x10^5 Pa. The first step is an isothermal expansion to a pressure of 5x10^4 Pa. Second, the gas is compressed at constant pressure back to the inital volume. Finally the gas returns, at constant volume to the initial state. What is the total work done by the gas during this cycle? What is the efficiency of this cycle?
The volume of a monatomic ideal gas doubles in an adiabatic expansion. Considering 115 moles of...
The volume of a monatomic ideal gas doubles in an adiabatic expansion. Considering 115 moles of gas with an initial pressure of 350 kPa and an initial volume of 1.4 m3 . Find the pressure of the gas after it expands adiabatically to a volume of 2.8 m3 . Pf= 110 kPa Find the temperature of the gas after it expands adiabatically to a volume of 2.8 m3 .
3.0 moles of an ideal gas are subjected to the following processes. First the volume is...
3.0 moles of an ideal gas are subjected to the following processes. First the volume is tripled in an isobaric process. Then it undergoes an isothermal process to a pressure of 9.0 kPa. The volume is then cut in half in another isobaric process after being tripled. Finally, it returns to the original state in an isochoric process. (a) Draw a PV diagram of the cycle. Label each state (vertex) with a letter (A, B, …) and each transition with...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT