Question

Two point charges, Q1 = 3.5 μC and Q2 = -1.5 μC , are placed on...

Two point charges, Q1 = 3.5 μC and Q2 = -1.5 μC , are placed on the x axis. Suppose that Q2 is placed at the origin, and Q1 is placed at the coordinate x1 = − 6.0 cm (Figure 1).

A)At what point(s) along the x axis is the electric field zero? Determine the x-coordinate(s) of the point(s). Show Steps.

Homework Answers

Answer #1

Suppose at distance 'd' from charge Q2 net electric field is zero, then

Electric field is given by:

E = kQ/R^2

Since we know that direction of electric field due to +ve charge will be away from charge and due to -ve charge will be towards the charge. In given case since Q1 is +ve and Q2 is -ve, So electric field will be zero towards the right side of Q2 (Since |Q1| > |Q2|)

Enet = E1 - E2 = 0

E1 = E2

kQ1/r1^2 = kQ2/r2^2

Q1 = 3.5 C

Q2 = -1.5 C

r1 = d+ 0.06

r2 = d

Using above values:

Q1/r1^2 = Q2/r2^2

3.5/(d + 0.06)^2 = 1.5/d^2

d/(d + 0.06) = sqrt(1.5/3.5)

d = sqrt(1.5/3.5)*(d + 0.06 )

d = 0.06/(1 - sqrt(1.5/3.5))

d = 0.174 m = 17.4 cm

So electric field will be zero at x = 17.4 cm

"Let me know if you have any query."

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Two point charges, Q1 = 3.6 μC and Q2 = -1.4 μC , are placed on...
Two point charges, Q1 = 3.6 μC and Q2 = -1.4 μC , are placed on the xx axis. Suppose that Q2 is placed at the origin, and Q1 is placed at the coordinate x1 = − 6.0 cm. 1. At what point(s) along the x axis is the electric field zero? Determine the x-coordinate(s) of the point(s). 2. At what point(s) along the x axis is the potential zero? Determine the x-coordinate(s) of the point(s).
Two point charges, Q1 = 3.6 μC and Q2 = -1.8 μC , are placed on...
Two point charges, Q1 = 3.6 μC and Q2 = -1.8 μC , are placed on the x axis. Suppose that Q2 is placed at the origin, and Q1 is placed at the coordinate x1 = − 5.0 cm (Figure 1). At what point(s) along the x axis is the electric field zero? Determine the x-coordinate(s) of the point(s). At what point(s) along the x axis is the potential zero? Determine the x-coordinate(s) of the point(s).
Two-point charges, Q1 = 3.0 μC and Q2 = -2.0 μC , are placed on the...
Two-point charges, Q1 = 3.0 μC and Q2 = -2.0 μC , are placed on the x-axis. Suppose that Q2 is placed at the origin, and Q1 is placed at the coordinate x1 = − 5.0 cm. At what point(s) along the xx axis is the electric field zero? Determine the xx-coordinate(s) of the point(s). At what point(s) along the xx axis is the potential zero? Determine the xx-coordinate(s) of the point(s).
Two point charges, Q1 = 3.6 μC and Q2 = -1.6 μC , are placed on...
Two point charges, Q1 = 3.6 μC and Q2 = -1.6 μC , are placed on the x axis. Suppose that Q2 is placed at the origin, and Q1 is placed at the coordinate. x1 = -4.0 cm At what point(s) along the xx axis is the electric field zero? Determine the xx-coordinate(s) of the point(s). At what point(s) along the xx axis is the potential zero? Determine the xx-coordinate(s) of the point(s).
Two point charges, Q1 = 3.6 μC and Q2 = -1.3 μC , are placed on...
Two point charges, Q1 = 3.6 μC and Q2 = -1.3 μC , are placed on the x-axis. Suppose that Q2 is placed at the origin, and Q1 is placed at the coordinate x1 = −6.0 cm (Figure 1). Part A) At what point(s) along the xx axis is the electric field zero? Determine the x-coordinate(s) of the point(s). Express your answer using two significant figures. If there is more than one answer, enter your answers in ascending order separated...
Two point charges, Q1 = 3.3 μC and Q2 = -1.3 μC , are placed on...
Two point charges, Q1 = 3.3 μC and Q2 = -1.3 μC , are placed on the x axis. Suppose that Q2 is placed at the origin, and Q1 is placed at the coordinate x1 = − 4.0 cm. At what point(s) along the x axis is the electric field zero? Determine the x-coordinate(s) of the point(s). If there is more than one answer, enter your answers in ascending order separated by commas. At what point(s) along the x axis...
Two point charges, Q1 = 3.0 μC and Q2 = -1.9 μC ,are placed on the...
Two point charges, Q1 = 3.0 μC and Q2 = -1.9 μC ,are placed on the x axis. Suppose that Q2 is placed at the origin, and Q1 is placed at the coordinate x1 = − 3.0 cm (Figure 1). 1. At what point(s) along the x axis is the electric field zero? Determine the x-coordinate(s) of the point(s). Express your answer using two significant figures. If there is more than one answer, enter your answers in ascending order separated...
Two point charges, Q1 = 2.9 μC and Q2 = -1.3 μC , are placed on...
Two point charges, Q1 = 2.9 μC and Q2 = -1.3 μC , are placed on the x axis. Suppose that Q2 is placed at the origin, and Q1 is placed at the coordinate x1 = − 4.0 cm (Figure 1). Part A Part complete At what point(s) along the x axis is the electric field zero? Determine the x-coordinate(s) of the point(s). Express your answer using two significant figures. If there is more than one answer, enter your answers...
Two point charges, q1=q1= 4.0×10-6 C and q2=q2= -1.0×10-6 C, are located on the x axis...
Two point charges, q1=q1= 4.0×10-6 C and q2=q2= -1.0×10-6 C, are located on the x axis at x1 = -1.0 cm and x2 = 3.0 cm. (a) Determine the electric field at the origin. b) Determine the x coordinate of a point on the positive x axis where the electric field is zero; i.e., a test charge placed at this point would experience no force. (a) Determine the electric field at the origin.
Two point charges, Q1Q1Q_1 = 3.1 μCμC and Q2Q2Q_2 = -1.5 μCμC , are placed on...
Two point charges, Q1Q1Q_1 = 3.1 μCμC and Q2Q2Q_2 = -1.5 μCμC , are placed on the xx axis. Suppose that Q2Q2 is placed at the origin, and Q1Q1 is placed at the coordinate x1x1 = −− 6.0 cmcm. 1: At what point(s) along the xx axis is the electric field zero? Determine the xx-coordinate(s) of the point(s). 2: At what point(s) along the xx axis is the potential zero? Determine the xx-coordinate(s) of the point(s).