Question

Plane waves of blue light, ℷ = 434 nm, falls on a single slit, then pass...

Plane waves of blue light, ℷ = 434 nm, falls on a single slit, then pass through a lens with a focal length of 85.0 cm between the screen and the slit. If the central band of the diffraction pattern on the screen has a width of 2.450 mm, find (a) the width “a” of the single slit. (b) the linear distance from the center of the screen of the first minimum of the diffraction pattern.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Light waves with two different wavelengths, 632 nm and 474 nm, pass simultaneously through a single...
Light waves with two different wavelengths, 632 nm and 474 nm, pass simultaneously through a single slit whose width is 8.68 × 10-5 m and strike a screen 1.00 m from the slit. Two diffraction patterns are formed on the screen. What is the distance (in cm) between the common center of the diffraction patterns and the first occurrence of the spot where a dark fringe from one pattern falls on top of a dark fringe from the other pattern?
Light waves with two different wavelengths, 632 nm and 474 nm, pass simultaneously through a single...
Light waves with two different wavelengths, 632 nm and 474 nm, pass simultaneously through a single slit whose width is 8.61 × 10-5 m and strike a screen 1.10 m from the slit. Two diffraction patterns are formed on the screen. What is the distance (in cm) between the common center of the diffraction patterns and the first occurrence of the spot where a dark fringe from one pattern falls on top of a dark fringe from the other pattern?
Light with a wavelength of 460 nm is incident on a single slit with a slit...
Light with a wavelength of 460 nm is incident on a single slit with a slit width of 1.55 mm. A Single Slit Diffraction Pattern is observed on a screen that is 1.55 m away from the slit. What is the angle for the 1st order minimum? What is the angle (in degrees - written as "deg") for the 2nd order minimum? How wide (in mm) is the Central Maximum? How wide (in mm) is the First Maximum that is...
1. monochromatic light of wavelength 540 nm from a source passes through a slit that is...
1. monochromatic light of wavelength 540 nm from a source passes through a slit that is 0.03mm wide. What is the width of the central bright fringe on the diffraction pattern formed on a screen placed at a distance of 2.00 m away from the slit? 2. Light of wavelength 500 nm is incident on a single slit of width 0.02 mm to produce a diffraction pattern with intensity 4.00×10^-4 W/m^2 at the center of a screen placed far away...
Light of wavelength 587.5 nm illuminates a slit, of width 0.74 mm. (a) At what distance...
Light of wavelength 587.5 nm illuminates a slit, of width 0.74 mm. (a) At what distance from the slit should a screen be placed if the first minimum in the diffraction pattern is to be 0.82mm from the central maximum? ________m (b) Calculate the width of the central maximum. _________ mm
Coherent light of wavelength 600 nm is incident on a narrow slit. The diffraction pattern is...
Coherent light of wavelength 600 nm is incident on a narrow slit. The diffraction pattern is observed on a screen that is 4.00 m from the slit. On the screen the width of the central maximum of the diffraction pattern is 3.00 mm. What is the width of the slit? answer is 1.6 mm
24.23: When blue light of wavelength 470 nm falls on a single slit, the first dark...
24.23: When blue light of wavelength 470 nm falls on a single slit, the first dark bands on either side of center are separated by 55.0 ∘. A) Determine the width of the slit.
Light with a wavelength of 550 nm is incident on a single slit, creating a diffraction...
Light with a wavelength of 550 nm is incident on a single slit, creating a diffraction pattern on a distant screen 2.5 m away. At a point on the diffraction pattern that is 1.443 m from the central maximum, the path length difference between the ray from the top of the slit and the bottom of the slit results in a phase difference of 6π radians. What is the width of the slit? (a) 1.1 µm (b) 2.2 µm (c)...
Light from a source of wavelength 475 nm passes through a single slit and falls on...
Light from a source of wavelength 475 nm passes through a single slit and falls on a screen 2.5 m away. If the slit width is 2.00 x 10^-6 m, how many maxima occur, including the central maximum? A student performs Young's double-slit experiment using a slit separation of 21.6 mm. A screen is placed 3.00 m from the centre of the sources such that a point on the fifth nodal line is 37.5 cm from the centre of the...
1.Light with a wavelength of 626 nm passes through a slit 7.74 μm wide and falls...
1.Light with a wavelength of 626 nm passes through a slit 7.74 μm wide and falls on a screen 1.75 m away. Find the linear distance on the screen from the central bright fringe to the first bright fringe above it._________cm 2. A 2.05-cm-tall object is placed 30.0 cm to the left of a converging lens with a focal length f1 = 21.0 cm . A diverging lens, with a focal length f2 = -42.5 cm , is placed 30.0...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT