Question

A car initially traveling at 25.7 m/s undergoes a constant negative acceleration of magnitude 1.50 m/s2...

A car initially traveling at 25.7 m/s undergoes a constant negative acceleration of magnitude 1.50 m/s2 after its brakes are applied.

(a) How many revolutions does each tire make before the car comes to a stop, assuming the car does not skid and the tires have radii of 0.350 m?


(b) What is the angular speed of the wheels when the car has traveled half the total distance?

Homework Answers

Answer #1

a. Initial speed Vi = 25.7 m/s

Final speed Vf =0

Acceleration a = - 1.50 m/s^2

Let S is distance traveled by the before stop after the break is applied.

( Vf )^2 = (Vi)^2 + 2aS

or, 0 = (25.7)^2 - (2×1.5×S)

or, S = (25.7)^2/ 3

so, S = 220.2 m

Radii of tyres R = 0.35 m

NO OF REVOLUTIONS

N = S/2R

= 220.2/ 2× 0.35  

= 100.13

b. Let V is linear speed at half distance

V^2 = (Vi)^2 +2a(S/2)

or, V^2 = ( 25.7)^2 - 1.5 × 220.2

or, V^2 = 330.2

Or, V = (330.2)^0.5 m/s

= 18.2 m/s

So, angular speed is

= V/R

= 18.2/0.35 rad/s

= 52.0 rad/S  

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A car initially traveling at 25.7 m/s undergoes a constant negative acceleration of magnitude 1.80 m/s2...
A car initially traveling at 25.7 m/s undergoes a constant negative acceleration of magnitude 1.80 m/s2 after its brakes are applied. (a) How many revolutions does each tire make before the car comes to a stop, assuming the car does not skid and the tires have radii of 0.320 m? rev (b) What is the angular speed of the wheels when the car has traveled half the total distance? rad/s
A car initially traveling at 29.2 m/s undergoes a constant negative acceleration of magnitude 2.00 m/s2...
A car initially traveling at 29.2 m/s undergoes a constant negative acceleration of magnitude 2.00 m/s2 after its brakes are applied (a) How many revolutions does each tire make before the car comes to a stop, assuming the car does not skid and the tires have radii of 0.300 m? (b) What is the angular speed of the wheels when the car has traveled half the total distance? rad/s
A car initially traveling at 25.9 m/s undergoes a constant negative acceleration of magnitude 1.40 m/s2...
A car initially traveling at 25.9 m/s undergoes a constant negative acceleration of magnitude 1.40 m/s2 after its brakes are applied. (a) How many revolutions does each tire make before the car comes to a stop, assuming the car does not skid and the tires have radii of 0.330 m? rev (b) What is the angular speed of the wheels when the car has traveled half the total distance? ______rad/s
A car initially traveling at 28.2 m/s undergoes a constant negative acceleration of magnitude 2.00 m/s2...
A car initially traveling at 28.2 m/s undergoes a constant negative acceleration of magnitude 2.00 m/s2 after its brakes are applied. (a) How many revolutions does each tire make before the car comes to a stop, assuming the car does not skid and the tires have radii of 0.320m? Answer: 98.9 (b) What is the angular speed of the wheels when the car has traveled half the total distance? Answer: ?
An car traveling at 110.0 km/h has tires of 67.0 cm diameter. If the car is...
An car traveling at 110.0 km/h has tires of 67.0 cm diameter. If the car is brought to a stop uniformly in 45.0 complete turns of the tires (without skidding), what is the magnitude of the angular acceleration of the wheels? A. 14.7 rad/s2 B. 9.7 rad/s2 C. 10.7 rad/s2 D. -14.7 rad/s2
A car traveling at 17.2 m/s skids to a stop in 188 m from the point...
A car traveling at 17.2 m/s skids to a stop in 188 m from the point where the brakes were applied. In what distance would the car have stopped had it been going 58.5 m/s , if tires and road condition were unchanged (i.e. if the acceleration were the same)?
A car is traveling at 88 ft/s when the brakes are fully applied, producing a constant...
A car is traveling at 88 ft/s when the brakes are fully applied, producing a constant deceleration of 11 ft/s2. What is the distance covered before the car comes to a stop?
A car is traveling at 15 m/s on a horizontal road. The brakes are applied and...
A car is traveling at 15 m/s on a horizontal road. The brakes are applied and the car skids to a stop in 4.0 s. The coefficient of kinetic friction between the tires and road is: Select one: a. 0.38 b. 0.69 A ball is thrown straight up with a speed of 36.0 m/s. How long does it take to return to its starting point? Select one: a. 7.20 s b. 10.2 s c. 14.7 s d. 11.0 s e....
During a very quick stop, a car decelerates at 6.2 m/s2. Assume the forward motion of...
During a very quick stop, a car decelerates at 6.2 m/s2. Assume the forward motion of the car corresponds to a positive direction for the rotation of the tires (and that they do not slip on the pavement). Randomized Variables at = 6.2 m/s2 r = 0.275 m ω0 = 93 rad/s Part (a) What is the angular acceleration of its tires in rad/s2, assuming they have a radius of 0.275 m and do not slip on the pavement? α...
A car traveling at 18.0 m/sm/s skids to a stop in 28.5 mm from the point...
A car traveling at 18.0 m/sm/s skids to a stop in 28.5 mm from the point where the brakes were applied. In what distance would the car have stopped had it been going 59.4 m/sm/s , if tires and road condition were unchanged (i.e. if the acceleration were the same)?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT