Question

A 1-kg object is attached to a spring of force constant k = 0.5 kN/m. The spring is stretched 10 cm from equilibrium and released. What is the kinetic energy of the massâ€“spring system when the mass is 5.0 cm from its equilibrium position? Group of answer choices

2.95 J

2.32 J

3.48 J

2.71 J

1.88 J

Answer #1

Given mass-spring system is a simple harmonic oscillator.

Spring constant , k= 0.5 kN/m=500 N/m

Maximum displacement of the mass is

At maximum displacement, the velocity of the mass is zero

Energy of the system at maximum displacement is

Energy of the system when the displacement is x = 5 cm =0.05 m

Where K is the Kinetic energy of the system at x=5 cm as the mass will have some speed at this position.

By Law of Conservation of energy,

Kinetic energy of the system is

A block of mass m = 0.53 kg attached to a spring with force
constant 119 N/m is free to move on a frictionless, horizontal
surface as in the figure below. The block is released from rest
after the spring is stretched a distance A = 0.13 m. (Indicate the
direction with the sign of your answer. Assume that the positive
direction is to the right.)
The left end of a horizontal spring is attached to a vertical
wall, and...

A spring-mass system consists of a 0.5 kg mass attached to a
spring with a force constant of k = 8 N/m. You may neglect the mass
of the spring. The system undergoes simple harmonic motion with an
amplitude of 5 cm. Calculate the following: 1. The period T of the
motion 2. The maximum speed Vmax 3. The speed of the object when it
is at x = 3.5 cm from the equilibrium position. 4. The total energy
E...

. A block of mass 2.00 kg is attached to a horizontal spring
with a force constant of 500 N/m. The spring is stretched 5.00 cm
from its equilibrium position and released from rest. Use
conservation of mechanical energy to determine the speed of the
block as it returns to equilibrium
(a) if the surface is frictionless
(b) if the coefficient of kinetic friction between the block and
the surface is 0.350

An object with a mass
m = 45.6 g
is attached to a spring with a force constant
k = 12.3 N/m
and released from rest when the spring is stretched 36.2 cm. If
it is oscillating on a horizontal frictionless surface, determine
the velocity of the mass when it is halfway to the equilibrium
position.

A horizontal spring attached to a wall has a force constant of
k = 820 N/m. A block of mass m = 1.20 kg is
attached to the spring and rests on a frictionless, horizontal
surface as in the figure below
(a) The block is pulled to a position xi =
5.40 cm from equilibrium and released. Find the potential energy
stored in the spring when the block is 5.40 cm from
equilibrium.
(b) Find the speed of the block...

A horizontal spring attached to a wall has a force constant of
k = 720 N/m. A block of mass m = 1.90 kg is
attached to the spring and rests on a frictionless, horizontal
surface as in the figure below.
(a) The block is pulled to a position xi = 6.20
cm from equilibrium and released. Find the potential energy stored
in the spring when the block is 6.20 cm from equilibrium.
(b) Find the speed of the block...

A 0.24 kg mass is attached to a light spring with a force
constant of 30.9 N/m and set into oscillation on a horizontal
frictionless surface. If the spring is stretched 5.0 cm and
released from rest, determine the following.
(a) maximum speed of the oscillating mass
b) speed of the oscillating mass when the spring is compressed
1.5 cm
(c) speed of the oscillating mass as it passes the point 1.5 cm
from the equilibrium position
(d) value of...

A horizontal spring attached to a wall has a force constant of
760 N/m. A block of mass 1.30 kg is attached to the spring and
oscillates freely on a horizontal, frictionless surface as in the
figure below. The initial goal of this problem is to find the
velocity at the equilibrium point after the block is released.
(c) Find the energy stored in the spring when the mass is
stretched 5.80 cm from equilibrium and again when the mass...

A 0.58 kg mass is attached to a light spring with a force
constant of 31.9 N/m and set into oscillation on a horizontal
frictionless surface. If the spring is stretched 5.0 cm and
released from rest, determine the following.
(a) maximum speed of the oscillating mass
m/s
(b) speed of the oscillating mass when the spring is compressed 1.5
cm
m/s
(c) speed of the oscillating mass as it passes the point 1.5 cm
from the equilibrium position
m/s...

A 0.68 kg mass is attached to a light spring with a force
constant of 36.9 N/m and set into oscillation on a horizontal
frictionless surface. If the spring is stretched 5.0 cm and
released from rest, determine the following.
(a) maximum speed of the oscillating mass
m/s
(b) speed of the oscillating mass when the spring is compressed 1.5
cm
m/s
(c) speed of the oscillating mass as it passes the point 1.5 cm
from the equilibrium...

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 1 minute ago

asked 22 minutes ago

asked 44 minutes ago

asked 52 minutes ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 2 hours ago

asked 2 hours ago

asked 2 hours ago

asked 2 hours ago