Question

If an electron is confined to one-dimensional motion between two infinite potential walls which are separated...

If an electron is confined to one-dimensional motion between two infinite potential walls which are separated by a distance equal to the Bohr radius, calculate the energies of the three lowest states of motion. Calculate numerical value of ground state energy and compare it with hydrogen atom ground state energy.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
If an electron is confined to one-dimensional motion between two infinite potential walls which are separated...
If an electron is confined to one-dimensional motion between two infinite potential walls which are separated by a distance equal to Bohr radius, calculate energies of the three lowest states of motion.Calculate numerical value of ground state energy and compare it with hydrogen atom ground state energy.
1. As we increase the quantum number of an electron in a one-dimensional, infinite potential well,...
1. As we increase the quantum number of an electron in a one-dimensional, infinite potential well, what happens to the number of maximum points in the probability density function? It increases. It decreases. It remains the same 2. If an electron is to escape from a one-dimensional, finite well by absorbing a photon, which is true? The photon’s energy must equal the difference between the electron’s initial energy level and the bottom of the nonquantized region. The photon’s energy must...
1. An electron is confined to a region of size 0.15 nm (i.e., infinite potential walls...
1. An electron is confined to a region of size 0.15 nm (i.e., infinite potential walls at either end). (a) (5 pts) What is the ground state energy in eV? (b) (5 pts) The electron falls from the 5th excited state to the 3rd excited state, emitting a photon in the process. What is the wavelength of the photon in nm? 2. Refer to the previous problem. (a) (4 pts) When the electron is in the 5th excited state, at...
A particle is confined to the one-dimensional infinite potential well of the figure. If the particle...
A particle is confined to the one-dimensional infinite potential well of the figure. If the particle is in its ground state, what is the probability of detection between x = 0.20L and x = 0.65L?
Eight electrons are confined to a two-dimensional infinite potential well with widths L_X = L y...
Eight electrons are confined to a two-dimensional infinite potential well with widths L_X = L y =L. Assume that the electrons do not electrically interact with one another. Considering electron spin and degeneracies of some energy levels, what is the total energy of the eight-electron system in its ground state, as a multiple of h^2/(8mL^2 )?
Consider a particle trapped in an infinite square well potential of length L. The energy states...
Consider a particle trapped in an infinite square well potential of length L. The energy states of such a particle are given by the formula: En=n^2ℏ^2π^2 /(2mL^2 ) where m is the mass of the particle. (a)By considering the change in energy of the particle as the length of the well changes calculate the force required to contain the particle. [Hint: dE=Fdx] (b)Consider the case of a hydrogen atom. This can be modeled as an electron trapped in an infinite...
Consider the Bohr model of the hydrogen atom for which an electron in the ground state...
Consider the Bohr model of the hydrogen atom for which an electron in the ground state executes uniform circular motion about a stationary proton at radius a0. (a) Find an expression for the kinetic energy of the electron in the ground state. (b) Find an expression for the potential energy of the electron in the ground state. (c) Find an expression for the ionization energy of an electron from the ground state of the hydrogen atom. The ionization energy is...
II(20pts). Short Problems a) The lowest energy of a particle in an infinite one-dimensional potential well...
II(20pts). Short Problems a) The lowest energy of a particle in an infinite one-dimensional potential well is 4.0 eV. If the width of the well is doubled, what is its lowest energy? b) Find the distance of closest approach of a 16.0-Mev alpha particle incident on a gold foil. c) The transition from the first excited state to the ground state in potassium results in the emission of a photon with  = 310 nm. If the potassium vapor is...
A proton, a neutron, and an electron are trapped in identical one-dimensional infinite potential wells; each...
A proton, a neutron, and an electron are trapped in identical one-dimensional infinite potential wells; each particle in its ground state. a.) At the center of the wells, is the probability density for the proton greater than, less than, or equal to that of the electron? Explain. b.) At the center of the wells, is the probability density for the neutron greater than, less than, or equal to that of the electron? Explain.
An electron is confined to a 1 micron (1.00 x 10-6m) thin layer of silicon. Assuming...
An electron is confined to a 1 micron (1.00 x 10-6m) thin layer of silicon. Assuming that the silicon can be described by a one-dimensional box with infinite potential walls, calculate the lowest possible energy within the material. The effective mass of electrons in silicon is m* = 2.37 x 10-31 kg.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT