Question

Is more work, less work, or the same amount of work needed to move a positive...

Is more work, less work, or the same amount of work needed to move a positive test charge from infinity to an equipotential contour that is 0.1 m from the charge in figure 2 compared to the work needed to move the test charge to a position 0.2 m away?

How much work is needed to move a charge from one position to another that is on the same equipotential contour?

Sketch electric field lines and at least three equipotential contours for an isolated negative charge.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
a. Determine the work in joules required to move a charge of 20 Coulombs through a...
a. Determine the work in joules required to move a charge of 20 Coulombs through a potential of 24 volts? b. Find the electric field in N/C, if a force of 4 N is required to move a charge of 20 Coulombs? c. Which of the following statements are true or false? Electric field lines are everywhere perpendicular to the equipotential lines An equipotential line is the locus of a set of points all of which have the same potential...
5. (a) Point A is 1 mm away from a proton, and point B is 0.1...
5. (a) Point A is 1 mm away from a proton, and point B is 0.1 mm away from the same proton. (i) What is the electric potential at point A and point B due to the proton? (ii) What is the electric potential difference between point A and point B? (b) Sketch the electric equipotential lines for: Positive charge, Negative charge, Positive charge & negative charge, Positive charge & Negative charge on rectangular bar.
This is from an lab dealing with electric feild and equipotential lines. 1.If the electric potential...
This is from an lab dealing with electric feild and equipotential lines. 1.If the electric potential between two points is zero, what does that mean in terms of the electric field in terms of the test charge? 2. Is the electric field a vector a scalar field? Explain 3. Why must equipotential lines be perpendicular to electric field lines? 4. How much work is required to move a small test charge along an equipotential line? 5. Find the electric field...
Did any of your field lines cross? Should they? Why, or why not? None of the...
Did any of your field lines cross? Should they? Why, or why not? None of the field lines crossed, nor should they. They are a line of constant potential and the equipotential can have only one value at a given point in space. If the electric field lines were to intersect, they would render a location with two different strong electric field vectors and so would not accurately represent equipotential lines. Did any of your equipotential surfaces cross? Should they?...
Suppose that a positive test charge q0 moves through a displacement d s→from one equipotential surface...
Suppose that a positive test charge q0 moves through a displacement d s→from one equipotential surface to the adjacent surface. The work the electric field does on the test charge during the move is –q0dV. The work done by the electric field may also be written as the scalar product (q0E→)·d s→, or q0E(cos θ) ds. It's a general question what if the test charge is negative? what happens to the displacement and work?
12. a. You do 31 J of work to move a -15 uC from infinity to...
12. a. You do 31 J of work to move a -15 uC from infinity to a spot some distance away from a -11 uC charge. What is that distance? [4.8 cm] b. The work you did is stored as potential energy in the system as long as the charges are both held fixed in that position. You then let the -15 uC charge go. If that point charge has a mass of 7.2x10-12 kg, how fast will it be...
3. (a) What is the electric field created by a proton at a distance of 0.1...
3. (a) What is the electric field created by a proton at a distance of 0.1 mm away from it? Note: the electric charge of a proton is e = 1.6 × 10−19 C. (b) Sketch the electric field lines for: Positive charge, Negative charge, Positive charge & Negative charge, Positive charge & Negative charge on rectangular bar. 4. An electric field, E = 5 N/C, crosses a square area at an angle, θ = 30◦ , as depicted in...
PLEASE SHOW ALL WORK! A charged metal sphere carries a charge of 15.0 μC. We place...
PLEASE SHOW ALL WORK! A charged metal sphere carries a charge of 15.0 μC. We place a test charge of -5.00 μC 50.0 cm away from the charged object, making an angle of 60.0° to the positive x-axis a) What is the magnitude of the electric field E generated by the charged sphere at the position of the test charge? b) Write down the components of the electric field at that point. c) What is the magnitude of the electric...
Drag a negative charge onto the grid and use the tape measure to place this charge...
Drag a negative charge onto the grid and use the tape measure to place this charge 0.5 m directly to the right of the positive charge. Drag a Voltmeter back onto the grid. Use the tape measure and the sensor to measure the electric potential at a distance of 0.5 m directly above the negative charge. Record below. V=___5.760V______           Use what we’ve learned in class to calculate the electric potential at this location. Show all work below. ( 1nC =...
In this example, we find the work needed to create a dipole by bringing in two...
In this example, we find the work needed to create a dipole by bringing in two point charges of mass m = 0.006 kg ; and opposite charge Q = 6 nC, from infinity, to within a distance d = 18 nm of one another. Gravity should be ignored. a) Find the potential energy between the two point charges when they are an infinite distance away from one another.     b) Find the electrostatic energy between the two charges when...