Question

When a 0.770 kg mass oscillates on an ideal spring, the frequency is 1.32 Hz ....

When a 0.770 kg mass oscillates on an ideal spring, the frequency is 1.32 Hz .

part a)

What will the frequency be if 0.270 kg are added to the original mass? Try to solve this problem without finding the force constant of the spring.

part b)

What will the frequency be if 0.270 kg are subtracted from the original mass? Try to solve this problem without finding the force constant of the spring.

Homework Answers

Answer #1

Angular frequency is given by

w^2 = k/m

( 2 pi f ) ^2 = k / m ... (i)

( 2*3.14* 1.32)^2 = k / 0.77

k = 52.91 N/m

=========

a) from (i) we can easily predict that, frequency is inversely proportional to square root of mass

So

f2 / f1 = sqrt ( m1 / m2)

f2 = f1 * sqrt ( m1 / m2)

f2 = 1.32 * sqrt ( 0.77/ (0.27+ 0.77))

f2 = 1.136 Hz

========

Similarly

f2 = 1.32* sqrt ( 0.77/ ( 0.77 - 0.27))

f2 = 1.638 Hz

=======

Do comment in case any doubt, will reply for sure,, good luck

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 255 g mass attached to a horizontal spring oscillates at a frequency of 5.50 Hz...
A 255 g mass attached to a horizontal spring oscillates at a frequency of 5.50 Hz . At t =0s, the mass is at x= 4.40 cm and has vx =− 34.0 cm/s . Determine: The period. The angular frequency. The amplitude. The phase constant.
A 245 g mass attached to a horizontal spring oscillates at a frequency of 1.30 Hz...
A 245 g mass attached to a horizontal spring oscillates at a frequency of 1.30 Hz . At t =0s the mass is at x= 4.20 cm and has vx=−=− 42.0 cm/s Determine the phase constant and max speed
A 195 g mass attached to a horizontal spring oscillates at a frequency of 2.50 Hz...
A 195 g mass attached to a horizontal spring oscillates at a frequency of 2.50 Hz . At t =0s, the mass is at x= 6.00 cm and has vx =? 40.0 cm/s . Determine:? the phase constant, the maximum speed, the maximum acceleration and the total energy
A 205 g mass attached to a horizontal spring oscillates at a frequency of 1.00 Hz...
A 205 g mass attached to a horizontal spring oscillates at a frequency of 1.00 Hz . At t =0s, the mass is at x= 4.20 cm and has vx =− 23.0 cm/s . Determine: (a) the period s (b) the angular frequency rad/s (c) the amplitude cm (d) the phase constant rad (e) the maximum speed cm/s (f) the maximum acceleration cm/s2 (g) the total energy J (h) the position at t = 4.2s
An ideal vertical spring-mass system oscillates with a period of 1.20 second when the mass used...
An ideal vertical spring-mass system oscillates with a period of 1.20 second when the mass used is 2.00 kg. How much elastic potential energy is stored in the spring when the mass is at its equilibrium position? a) 2.53 b) 3.09 c) 3.65 d) 4.77 e) 5.70 )
A 200 g mass attached to a horizontal spring oscillates at a frequency of 2.0 Hz...
A 200 g mass attached to a horizontal spring oscillates at a frequency of 2.0 Hz . At one instant t=0s, the mass is at x=5.0cm and has V=−30cm/s. Determine the time that the mass passes through the equilibrium position for the first time.
A 240 g mass attached to a horizontal spring oscillates at a frequency of 5.20 Hz...
A 240 g mass attached to a horizontal spring oscillates at a frequency of 5.20 Hz . At t =0s, the mass is at x= 6.80 cm and has vx =− 27.0 cm/s . Determine: The period. Enter your answer numerically to five significant figures. The angular frequency. Enter your answer numerically to five significant figures. The amplitude. Enter your answer numerically to five significant figures. The phase constant. Enter your answer numerically to four significant figures.
A block with mass m =6.7 kg is hung from a vertical spring. When the mass...
A block with mass m =6.7 kg is hung from a vertical spring. When the mass hangs in equilibrium, the spring stretches x = 0.27 m. While at this equilibrium position, the mass is then given an initial push downward at v = 4.5 m/s. The block oscillates on the spring without friction. 1. What is the spring constant of the spring? 2. What is the oscillation frequency? 3. After t = 0.46 s what is the speed of the...
A block with mass m =7.3 kg is hung from a vertical spring. When the mass...
A block with mass m =7.3 kg is hung from a vertical spring. When the mass hangs in equilibrium, the spring stretches x = 0.29 m. While at this equilibrium position, the mass is then given an initial push downward at v = 5 m/s. The block oscillates on the spring without friction. 1) What is the spring constant of the spring? N/m Submit 2) What is the oscillation frequency? Hz Submit 3) After t = 0.45 s what is...
A particle with mass 1.23 kg oscillates horizontally at the end of a horizontal spring. A...
A particle with mass 1.23 kg oscillates horizontally at the end of a horizontal spring. A student measures an amplitude of 0.847 m and a duration of 125 s for 69 cycles of oscillation. Find the frequency, ?, the speed at the equilibrium position, ?max, the spring constant, ?, the potential energy at an endpoint, ?max, the potential energy when the particle is located 41.3% of the amplitude away from the equiliibrium position, ?, and the kinetic energy, ?, and...