Question

In outer space a rock with mass 9 kg, and velocity <3700, -3000, 3000> m/s, struck...

In outer space a rock with mass 9 kg, and velocity <3700, -3000, 3000> m/s, struck a rock with mass 14 kg and velocity <200, -260, 180> m/s. After the collision, the 9 kg rock's velocity is <3300, -2500, 3500> m/s.

What is the final velocity of the 14 kg rock?

What is the change in the internal energy of the rocks?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
In outer space rock 1, with mass 3 kg and velocity < 3900, -3200, 2600 >...
In outer space rock 1, with mass 3 kg and velocity < 3900, -3200, 2600 > m/s, struck rock 2, which was at rest. After the collision, rock 1's velocity is < 3400, -2400, 3000> m/s. What is the final momentum of rock 2? 2f =   kg · m/s Before the collision, what was the kinetic energy of rock 1? K1i =    Before the collision, what was the kinetic energy of rock 2? K2i =  J After the collision, what is the...
A curling stone of mass 20 kg and initially traveling at 2.0 m/s collides head-on with...
A curling stone of mass 20 kg and initially traveling at 2.0 m/s collides head-on with a lighter stone of mass 15 kg which is initially at rest. After the collision the struck stone has a speed of 1.6 m/s in the same direction as the initial velocity of the heavy stone. a) What is the final velocity of the heavy stone? b) Is this collision elastic? Explain. If the collision is not elastic, find the macroscopic energy lost in...
A 2500 kg car moving east at 10.0 m/s collides with a 3000 kg car moving...
A 2500 kg car moving east at 10.0 m/s collides with a 3000 kg car moving north. The cars stick together and move as a unit after the collision, at an angle of 47.0° north of east and at a speed of 6.66 m/s. Find the velocity of the 3000 kg car before the collision. m/s north
A ball with a mass of 0.615 kg is initially at rest. It is struck by...
A ball with a mass of 0.615 kg is initially at rest. It is struck by a second ball having a mass of 0.405 kg , initially moving with a velocity of 0.275 m/s toward the right along the x axis. After the collision, the 0.405 kg ball has a velocity of 0.215 m/s at an angle of 36.9 ? above the x axis in the first quadrant. Both balls move on a frictionless, horizontal surface. What is the magnitude...
A ball with a mass of 1.1 kg is initially at rest. It is struck by...
A ball with a mass of 1.1 kg is initially at rest. It is struck by a second ball having a mass of 1.3 kg, initially moving with a velocity of 3.5 m/s toward the right along the x axis. After the collision, the 1.3 kg ball has a velocity of 2.7 m/s at an angle of 35? above the x axis in the first quadrant. Both balls move on a frictionless, horizontal surface. Do not assume that the collision...
A car of mass 2500 kg collides with a truck of mass 4400 kg, and just...
A car of mass 2500 kg collides with a truck of mass 4400 kg, and just after the collision the car and truck slide along, stuck together, with no rotation. The car's velocity just before the collision was <31, 0, 0> m/s, and the truck's velocity just before the collision was <-13, 0, 24> m/s. b)what is the increase in internal energy of the car and truck (thermal energy and deformation)?
An object with velocity 1.4 m/s i and mass 0.27 kg collides with an object whose...
An object with velocity 1.4 m/s i and mass 0.27 kg collides with an object whose velocity is -2.5 m/s i and whose mass is 0.12 kg. The motion takes place in one dimension. (a) What are the final velocities of the objects if the collision is elastic? b.) What is the total initial kinetic energy in the collision?
A rock is dropped from outer space (initial velocity=0) at a distance of 1.9Rearth from the...
A rock is dropped from outer space (initial velocity=0) at a distance of 1.9Rearth from the Earth’s center. What speed will it have when it reaches the surface of the planet. (Ignore the air resistance felt during the last few miles of the approach to the planet) Rearth = 6.38 × 10^6 m, Mearth = 5.98 × 10^24 kg. (in m/s)
A spring with a mass 4 kg and spring constant 3000 N/m has a velocity of...
A spring with a mass 4 kg and spring constant 3000 N/m has a velocity of 12m/s at x=0.6m. a. what is the amplitude of this oscillator? b. what is the energy and maximum velocity of this oscillator?
A glider of mass m1 = 8 kg has a velocity v1i = +2 m/s before...
A glider of mass m1 = 8 kg has a velocity v1i = +2 m/s before colliding with a second glider of mass m2 = 4 kg, moving with velocity v2i = -4 m/s. After the collision the first glider has a velocity of v1f = -1 m/s. This collision is Elastic Partially inelastic Totally inelastic Impossible A glider of mass m1 = 8 kg has a velocity v1i = +2 m/s before colliding with a second glider of mass...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT