Question

The figure below shows an electron passing between two charged metal plates that create an 85...

The figure below shows an electron passing between two charged metal plates that create an 85 N/C vertical electric field perpendicular to the electron’s original horizontal velocity. (These can be used to change the electron’s direction, such as in an oscilloscope.) The initial speed of the electron is 2.60×106 m/s, and the horizontal distance it travels in the uniform field is 4.30 cm. What is its vertical deflection?

What is the vertical component of its final velocity?

At what angle does it exit? Neglect any edge effects.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The figure bellow shows an electron passing between two charged metal plates that create an 100...
The figure bellow shows an electron passing between two charged metal plates that create an 100 N/C vertical electric field perpendicular to the electron
At some instant the velocity components of an electron moving between two charged parallel plates are...
At some instant the velocity components of an electron moving between two charged parallel plates are vx=2.0×105 m/s and vy=3.1×103 m/s. Suppose the electric field between the plates is uniform and given by E→=(120N/C)j. In unit-vector notation, what are (a) the electron’s acceleration in that field and (b) the electron’s velocity when its x coordinate has changed by 2.4 cm?
Two very large charged parallel metal plates are 8.50 cm apart and produce a uniform electric...
Two very large charged parallel metal plates are 8.50 cm apart and produce a uniform electric field of 3.05×106 N/C between them. A proton is fired perpendicular to these plates, starting at the middle of the negative plate and going toward the positive plate. How much work has the electric field done on this proton by the time it reaches the positive plate? Answer in Joules.
In the figure, a uniform, upward-pointing electric field E of magnitude 3.50×103 N/C has been set...
In the figure, a uniform, upward-pointing electric field E of magnitude 3.50×103 N/C has been set up between two horizontal plates by charging the lower plate positively and the upper plate negatively. The plates have length L = 4 cm and separation d = 2.00 cm. Electrons are shot between the plates from the left edge of the lower plate. The first electron has the initial velocity v0, which makes an angle θ=45° with the lower plate and has a...
The separation between two charged metallic plates is 15cm. The electric field between the plates is...
The separation between two charged metallic plates is 15cm. The electric field between the plates is uniform and has an intensity of 3000N/C. An electron is released at rest at a point P precisely over the surface of the negative plate. A) In how much time will it reach the other plate? B) What is its velocity before reaching the plate? Thank you in advance!
In the figure, a uniform, upward-pointing electric field E of magnitude 2.50×103 N/C has been set...
In the figure, a uniform, upward-pointing electric field E of magnitude 2.50×103 N/C has been set up between two horizontal plates by charging the lower plate positively and the upper plate negatively. The plates have length L = 4 cm and separation d = 2.00 cm. Electrons are shot between the plates from the left edge of the lower plate. The first electron has the initial velocity v0, which makes an angle θ=45° with the lower plate and has a...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT