Question

Reset the cannon. 2. Change the angle of the cannon to 60º and set the initial...

Reset the cannon.


2. Change the angle of the cannon to 60º and set the initial speed to 15 m/s.


3. Unclick “acceleration vectors and click the “components” and “velocity vectors” in the right box.


4. Pause the simulation at any point during the time when the ball is in air, take a screenshot and paste it below.






5. How does the length of velocity vector in the y direction change as the ball moves in the air? Explain.




6. When is the velocity vector in the y direction 0?






7. Does the length of velocity vector in the x direction change as the ball moves in the air? Explain.


Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Using a cannon, you attempt to sink a pirate ship that is stationary at a distance...
Using a cannon, you attempt to sink a pirate ship that is stationary at a distance d away from your shores. The muzzle velocity of the cannon is known to be v0. You will be finding the angle that the cannon must make with the horizon for the cannon ball to hit the ship. A. Write the x-components of the equations of motion for the cannon ball B. Write the y-components of the equations of motion for the cannon ball...
1. A cannon ball is fired from a giant cannon whose length is 1.00 x 102...
1. A cannon ball is fired from a giant cannon whose length is 1.00 x 102 m.  The cannon ball leaves the barrel at a speed of 99.5 m/s: a. What is the acceleration of the cannon ball while in the cannon? Show all work. The cannon ball (above) leaves the barrel at ground level at an angle of 60.0o from the ground and travels with minimal air resistance until impacting on the ground some distance away. b. Calculate the initial...
Change the Gravity to 9.80 m/s2.. Keep the height of the cannon at ground level. Determine...
Change the Gravity to 9.80 m/s2.. Keep the height of the cannon at ground level. Determine what angles you must have the cannon tilted at to have the cannon ball land at the target 20.5 m away when you have an initial speed of 20 m/s using the simulation. Let the mass of the cannon ball remain at 17.60 kg and the diameter at 0.18 m. Then use the Range formula R=v02sin(2θ)g to verify the angles. (Hint: recall from Trigonometry...
Initial velocity of a shell fired is 40 m/s at an angle of 60º above the...
Initial velocity of a shell fired is 40 m/s at an angle of 60º above the horizontal. Draw a schematic sketch of the projection motion and write down the basic equations needed to solve this problem. (a) Find horizontal and vertical components of shell’s initial velocity. (b) How long does it take for the shell to reach the maximum height above ground? (c) At its highest point, what are the horizontal and vertical components of its acceleration and velocity? (Ignore...
A quarterback shows a football with an initial speed of 20m/s at an angle of 40°...
A quarterback shows a football with an initial speed of 20m/s at an angle of 40° above the horizontal. Neglecting the height of release and assuming no air friction, answer the two questions below: When the ball is at its maximum height, the horizontal and vertical components of the velocity vector are: A) Vx = 0m/s, Vy = 0m/s B) Vx = 0m/s, Vy = 18.4 m/s C) Vx = 15.3 m/s, Vy =0m/s When the ball is at its...
You throw a tennis ball North with an initial speed of 24 feet per second, at...
You throw a tennis ball North with an initial speed of 24 feet per second, at an angle of elevation 30° above horizontal, releasing the ball 4 feet above the ground. A steady wind imparts a constant acceleration of 3 feet per second squared Eastward. Acceleration due to gravity is a constant 32 feet per second squared downward. Throughout the problem, let East be the positive x direction, North the positive y direction, and up the positive z direction. Let...
A beam of protons (proton mass is 1.67 x 10 -​ 27 kg) moves at 3...
A beam of protons (proton mass is 1.67 x 10 -​ 27 kg) moves at 3 x 10 5​ m/s through a uniform magnetic field with magnitude 2 T. The magnetic field has exactly equal components along the positive ​y and negative ​x axes and no component along the ​z axis. The velocity of each proton lies in the ​xz-​ plane at an angle of 30 0​ ​to the​ z-​ axis. (a) Write the magnetic field ​B and the velocity...
A quarterback is set up to throw the football to a receiver who is running with...
A quarterback is set up to throw the football to a receiver who is running with a constant velocity ~vr directly away from the quarterback and is now a distance D away from the quarterback. The quarterback estimates that the ball must be thrown at an angle θ to the horizontal and the receiver must catch the ball a time interval tc after it is thrown. Assume the ball is thrown and caught at the same height y = 0...
A projectile has an initial velocity of 45 m/s at an angle of 53o with respect...
A projectile has an initial velocity of 45 m/s at an angle of 53o with respect to the horizontal and begins at ground level. a. What are the x and y components of the projectile’s initial velocity? b. What is the maximum height of the projectile? c. How far away from where it begins does the object strike the ground? d. What is the magnitude and direction of the projectile’s velocity at t= 3 s? e. What is the displacement...
1. For a stationary ball of mass m = 0.200 kg hanging from a massless string,...
1. For a stationary ball of mass m = 0.200 kg hanging from a massless string, draw arrows (click on the “Shapes” tab) showing the forces acting on the ball (lengths can be arbitrary, but get the relative lengths of each force roughly correct). For this case of zero acceleration, use Newton’s 2nd law to find the magnitude of the tension force in the string, in units of Newtons. Since we will be considering motion in the horizontal xy plane,...