Question

Two identical loudspeakers are situated at the same height above a horizontal xy-plane and emit sound...

Two identical loudspeakers are situated at the same height above a horizontal xy-plane and emit sound waves of frequency 1660 Hz. The speakers are located at coordinates (0,1.57) and (0,-1.57), with units in meters. A point O on the x-axis a distance x1 = 9.1 meters away (x1,0) is the location of an interference maximum. A second point P at (x1, y2) is the location of the first minimum of sound intensity when moving away from point O in the y-direction. Points O and P are at the same height as the two speakers. What is the value of y2 (in meters) for point P?

Homework Answers

Answer #1

Here we apply concept of interference and apply condition for interference minimum.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Two loudspeakers emit identical sound waves along the x-axis. The sound at a point on the...
Two loudspeakers emit identical sound waves along the x-axis. The sound at a point on the axis has maximum intensity when the speakers are 25 cm apart. The sound intensity decreases as the distance between the speakers is increased, reaching zero at a separation of 55 cm. A) What is the wavelength of the sound? Express your answer with the appropriate units. B) If the distance between the speakers continues to increase, at what separation will the sound intensity again...
Two loudspeakers are in a room where the speed of sound is 343 m/s. They emit...
Two loudspeakers are in a room where the speed of sound is 343 m/s. They emit 531 Hz sound waves along the x-axis. If the speakers are in phase, what is the smallest distance between the speakers for which the interference of the sound waves is perfectly destructive (in m)?
Two loudspeakers sit next to each other on a line in a 10◦C room.They both emit...
Two loudspeakers sit next to each other on a line in a 10◦C room.They both emit a 660 Hz sound 1. If the speakers have the same phase constant, what is the smallest distance between the speakers for which the interference of thesound waves is perfectly constructive? 2. If the speakers have phase constant difference equal to π, what isthe smallest distance between the speakers for which the interference of the sound waves is perfectly constructive? 3. If the speakers...
Two loudspeakers emit coherent in phase sound waves with at a frequency of 68.8 Hz. The...
Two loudspeakers emit coherent in phase sound waves with at a frequency of 68.8 Hz. The speed of sound is 344.0 m/s. Point q is vertically located 2.0 m from the bottom speaker and 5.0 m from the top speaker. At point q, is there maximum constructive interference, complete destructive interference, or neither?? Explain your answer.
Two loudspeakers emit 500 Hz sound waves with an amplitude of 1cm. Speaker 2 is 1.00m...
Two loudspeakers emit 500 Hz sound waves with an amplitude of 1cm. Speaker 2 is 1.00m behind speaker 1, and the phase difference between the speakers is 90 degree . (I) What is the phase difference of the sound wave at a point 2.00 m in front of speaker 1? (II) What is the minimum distance between the two speakers such that the observer at this position hears the minimal sound? (6 points)
Two identical speakers are situated in the x-y plane. Speaker1 has coordinates (0, 0) and speaker2...
Two identical speakers are situated in the x-y plane. Speaker1 has coordinates (0, 0) and speaker2 has coordinates (7/2, 0). The speakers are driven by the same source of frequency 113 Hz, and the velocity of sound is 339 m/sec. Find the location (in fractional form) of all the minima and maxima for 0 < x < 7/2
Two identical speakers are situated in the x-y plane. Speaker1 has coordinates (0, 0) and speaker2...
Two identical speakers are situated in the x-y plane. Speaker1 has coordinates (0, 0) and speaker2 has coordinates (7/2, 0). The speakers are driven by the same source of frequency 113 Hz, and the velocity of sound is 339 m/sec. Find the location (in fractional form) of all the minima and maxima for 0 < x < 7/2
Two identical speakers are situated in the x-y plane. Speaker1 has coordinates (0, 0) and speaker2...
Two identical speakers are situated in the x-y plane. Speaker1 has coordinates (0, 0) and speaker2 has coordinates (7/2, 0). The speakers are driven by the same source of frequency 113 Hz, and the velocity of sound is 339 m/sec. Find the location (in fractional form) of all the minima and maxima for 0 < x < 7/2
Two loudspeakers are in phase and both producing 458-Hz sound waves 3 meters from each other....
Two loudspeakers are in phase and both producing 458-Hz sound waves 3 meters from each other. A person initially stands 1.6 meters in front      of one of the speakers. The person then walks directly away from this speaker. How far will the person have walked when they hear the combined sounds from the two speakers reach a minimum in loudness for the third time? The power output of each speaker is 2.40 mW. What is the sound intensity level...
Two stereo speakers mounted 4.52 m apart on a wall emit identical sound waves. You are...
Two stereo speakers mounted 4.52 m apart on a wall emit identical sound waves. You are standing at the opposite wall of the room at a point directly between the two speakers. You walk 2.11 m parallel to the wall to a location where you first notice that the sound intensity is much less. If the wall along which you are walking is 13.3 m from the wall with the speakers, what is the wavelength of the sound waves? (Answer:...