Question

What is the wavelength of a wave described by the following function: y(x,t) = (2.00 m)cos[(3.00...

What is the wavelength of a wave described by the following function: y(x,t) = (2.00 m)cos[(3.00 m-1)x + (5.00 s-1)t]

Homework Answers

Answer #1

Here the negative sign we get represents only the direction of propagation of wave.

so the wavelength(magnitude) is 2.09 m.

(* you can also use the answer with pie.That is not necessary to put the value of pie).

Hope you understood the anṣwer.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A wave on a string is described by y(x,t)=( 4.0 cm )×cos[2π(x/( 1.2 m )+t/( 0.30...
A wave on a string is described by y(x,t)=( 4.0 cm )×cos[2π(x/( 1.2 m )+t/( 0.30 s ))] , where x is in m and t is in s . Part B What is the wave speed?    v =     m/s Part C What is the wave frequency?    f =     Hz Part D What is the wave length?    =    m Part E At t = 0.75 s , what is the displacement of the string at x = 0.10 m ?     ...
A wave on a string is described by the equation y(x, t) = 2*cos(2 π(x/4m- t...
A wave on a string is described by the equation y(x, t) = 2*cos(2 π(x/4m- t /.1 s)) where x is in meters and t is in seconds. a. Is the wave travelling to the right or to the left? _________ b. What is the wave frequency? __________ c. What is the wavelength? ___________ d. What is the wave speed? _________ e. At t=0.50 seconds what is the displacement of the string at x=0.20 meters. _________
A wave on a string is described by the equation y(x,t)=3.0 cm*〖cos(〗⁡〖2π*(x/2.4m+t/(0.2 s)))〗 . X is...
A wave on a string is described by the equation y(x,t)=3.0 cm*〖cos(〗⁡〖2π*(x/2.4m+t/(0.2 s)))〗 . X is in meters and t is in seconds. Is the wave travelling to the right or to the left? _________ What is the wave speed? _________ What is the wave frequency? __________ What is the wavelength? ___________ At t=0.50 seconds what is the displacement of the string at x=0.20 meters. _________
Consider a monochromatic wave on a sting described by an equation Y(x,t) = cos (x -...
Consider a monochromatic wave on a sting described by an equation Y(x,t) = cos (x - t). Assume everything is expressed in SI units. a) Find wave amplitude b) Find wave velocity c) Find wave frequency d) Find wavelength
A sine wave on a string is described by the wave function y (x, t) =...
A sine wave on a string is described by the wave function y (x, t) = 5.50 sin (0.70x-60.00t) where x and y are in meters and t in seconds. The mass per unit length of this rope is 11.00 g / m. Determine (a) the wavelength, (b) the average power transmitted by the wave. a 8.98 m, 95464.29 W b 0.10 m, 212.14 W c 0.10 m, 95464.29 W d 8.98 m, 212.14 W
Consider a monochromatic wave on a sting described by an equation Y(x,t) = cos (x -...
Consider a monochromatic wave on a sting described by an equation Y(x,t) = cos (x - t). Assume everything is expressed in SI units. a) What is speed of sound in the air at normal conditions in m/s? b) Why is it difficult for a passenger jet to fly faster than sound? c) What is the wavelength of a sound propagating in air generated by the standard A-tone (440 Hz)? d) Suppose you stand between two speakers, exactly at the...
A sinusoidal sound wave moves through a medium and is described by the displacement wave function...
A sinusoidal sound wave moves through a medium and is described by the displacement wave function s(x,t) = (2.00µm)cos[(15.7 rad m )x − (858 rad s )t]. a) Find the amplitude of this wave. b) Find the wavelength of this wave. c) Find the speed of this wave. d) Determine the instantaneous displacement from equilibrium of the elements of the medium at the position x = 0.0500 m and t = 3.00 ms. e) Determine the maximum speed of the...
A wave on a string can be described by the following equation: y(x,t)=9.2cos(4.2x+0.85t) where y and...
A wave on a string can be described by the following equation: y(x,t)=9.2cos(4.2x+0.85t) where y and x are in meters and t is in seconds. 1) What is the speed of the wave? 0.79 m/s 1.27 m/s 0.2 m/s 4.94 m/s 0.03 m/s 2) What is its wavelength? 0.2 m 0.67 m 7.39 m 5.34 m 1.5 m 3) What is the acceleration of the string in the y direction at x=1.7 m and t=7 seconds? 3.91 m/s2 7.97 m/s2...
A wave on a string has a wave function given by: y (x, t) = (0.300m)...
A wave on a string has a wave function given by: y (x, t) = (0.300m) sin [(4.35 m^-1 ) x + (1.63 s^-1 ) t] where t is expressed in seconds and x in meters. Determine: (10 points) a) the amplitude of the wave b) the frequency of the wave c) wavelength of the wave d) the speed of the wave
A transverse wave on a string is described by y(x, t) = (0.140 mm) sin {(5.747...
A transverse wave on a string is described by y(x, t) = (0.140 mm) sin {(5.747 rad/m)[x − (69.8 m/s)t]}. Find the wavelength of this wave. in m Find the frequency of this wave. in Hz Find the amplitude of this wave in mm Find the speed of motion of the wave in m/s Find the direction of motion of the wave. Express your answer as "+x" or "-x".