Question

Suppose a rocket ship at position x=0 begins firing its engines at time t=0, causing it...

Suppose a rocket ship at position x=0 begins firing its engines at time t=0, causing it to increase its speed with a constant acceleration a0. At t=t0, the engines are turned off. Assuming that the rocket always moves in a straight line (x-direction), find the expressions for the velocity and position of the rocket for 0<t<t0 and t>t0. Draw graphs of velocity vs. time and position vs. time.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A particle moves such that its velocity at time  is given by v=4t3i+5t4j+3t2k If its position x...
A particle moves such that its velocity at time  is given by v=4t3i+5t4j+3t2k If its position x at time t=0 is given by x(0)=i+j+k , what is the position of the particle at time t?
2). A particle moving on the x-axis has a time-dependent position (t) given by the equation...
2). A particle moving on the x-axis has a time-dependent position (t) given by the equation x (t) = ct - bt^3. Where the units of x are meters (m) and time t in seconds (s). (Hint: you must get derivatives, you need graph paper) (a) So that the position in x has units of meter which are the units of the constants c and b? Sic = 5yb = 1.Desdeti = 0satf = 3s. (b) What is its displacement,...
A particle moves in the xy plane. Its position vector function of time is ?⃑ =...
A particle moves in the xy plane. Its position vector function of time is ?⃑ = (2?3 − 5?)?̂ + (6 − 7?4)?̂ where r is in meters and t is in seconds. a) In unit vector notation calculate the position vector at t =2 s. b) Find the magnitude and direction of the position vector for part a. c) In unit vector notation calculate the velocity vector at t =2 s. d) Find the magnitude and direction of the...
A particle moves in the xy plane, starting from the origin at t=0 with an initial...
A particle moves in the xy plane, starting from the origin at t=0 with an initial velocity having an x-component of 6 m/s and y component of 5 m/s. The particle experiences an acceleration in the x-direction, given by ax=4t m/s2. Determine the acceleration vector at any later time. Determine the total velocity vector at any later time Calculate the velocity and speed of the particle at t=5.0 s, and the angle the velocity vector makes with the x-axis. Determine...
Kinematics Examples: A) A cat has a time dependent position given by x(t) = 4.50 m...
Kinematics Examples: A) A cat has a time dependent position given by x(t) = 4.50 m + (3.20 m/s^2) t^2 - (1.75 m/s^3) t^3 Find Velocity as function of time? Find acceleration as a function of time? Find the position velocity, and acceleration of the cat at t = 3.00 s? Find average velocity and average acceleration for the 1st 3.00s? Find the position of the cat when it first changes direction? B) A robot starts at X0 = 4.00m...
The velocity of a particle constrained to move along the x-axis as a function of time...
The velocity of a particle constrained to move along the x-axis as a function of time t is given by: v(t)v(t)=−(−(14/t0)sin(t/t0)/t0)sin(t/t0). Part A: If the particle is at x=8 m when t=0, what is its position at t = 9t0. You will not need the value of t0 to solve any part of this problem. If it is bothering you, feel free to set t0=1everywhere. Part B: Denote instantaneous acceleration of this particle by a(t). Evaluate the expression 8 +v(0)t+a(0)t2/2+v(0)t+a(0)t2/2...
1.At time t = 0, the initial position of an object is x1 = -9.00 m....
1.At time t = 0, the initial position of an object is x1 = -9.00 m. Two seconds later he is in position x2 = 5.00m and finally moves to position x3 = -12.0m for a total time of three seconds. Speed average (in m / s) of the object in this time interval is: 2.The position of a particle is described by the function x = 4.0 t2 - 2.0 t + 2.0 (m). Determine the average acceleration (in...
the position of a particle when t=0 is 9.0m and its velocity is 3.0 m/s. from...
the position of a particle when t=0 is 9.0m and its velocity is 3.0 m/s. from t=0 to t=3.5s the acceleration of a particle is a= 8 + 6t + 3t^2 + t^3 m/s^2 . From t=3.5s until it comes to rest, its acceleration is a= -8 m/s^2 . Determine the total travel time and the total distance.
Sally is driving along a straight highway. At t = 0, when she is moving in...
Sally is driving along a straight highway. At t = 0, when she is moving in the +x direction at 10 m/s, she passes a signpost at x = 50 m. Her acceleration as a function of time is ax = 2.0 m/s2 – (0.10 m/s3)t . (a) Find her velocity and position x as a function of time. (b) When is her velocity greatest? (c) What is the maximum velocity? (d) Where is the car when it reaches that...
The equation x(t) = −bt2 + ct3 gives the position of a particle traveling along the...
The equation x(t) = −bt2 + ct3 gives the position of a particle traveling along the x axis at any time. In this expression, b = 4.00 m/s2, c = 4.80 m/s3, and x is in meters when t is entered in seconds. For this particle, determine the following. (Indicate the direction with the sign of your answer as applicable.) (a) displacement and distance traveled during the time interval t = 0 to t = 3 s displacement     distance     (b)...