Question

A camera is supplied with two interchangeable lenses, whose focal lengths are 36.0 and 140.0 mm....

A camera is supplied with two interchangeable lenses, whose focal lengths are 36.0 and 140.0 mm. A woman whose height is 1.75 m stands 7.50 m in front of the camera. What is the height (including sign) of her image on the image sensor, as produced by (a) the 36.0-mm lens and (b) the 140.0-mm lens? Answer has to be in m!

please explain, when i did this i got for a)6.75E-3 m and b) -.0266 m and it was wrong.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
51) Consult Interactive Solution 26.51 to review the concepts on which this problems depends. A camera...
51) Consult Interactive Solution 26.51 to review the concepts on which this problems depends. A camera is supplied with two interchangeable lenses, whose focal lengths are 25.0 and 150.0 mm. A woman whose height is 1.66 m stands 7.50 m in front of the camera. What is the height (including sign) of her image on the image sensor, as produced by (a) the 25.0-mm lens and (b) the 150.0-mm lens?
The focal lengths of the converging and diverging lenses in the diagram are 8 and -11...
The focal lengths of the converging and diverging lenses in the diagram are 8 and -11 cm, respectively. The distance between the lenses is 22 cm and the object is placed 14 cm to the left of the converging lens. Determine the location of the first image with respect to the first lens (including the sign) q1=  cm. Find the magnification of this image M1=  . Determine the second object distance. p2=  cm. Determine the second (final) image distance with respect to the...
Two converging lenses with focal lengths of 40 cm and 19 cm are 10 cm apart....
Two converging lenses with focal lengths of 40 cm and 19 cm are 10 cm apart. A 3.2 cm tall object is 15 cm in front of the 40 cm focal-length lens. Calculate the distance between the final image and the 19 cm focal-length lens and the final image height.
A simple camera telephoto lens consists of two lenses. The objective lens has a focal length...
A simple camera telephoto lens consists of two lenses. The objective lens has a focal length f1 = 38.8 cm . Precisely 36.0 cm behind this lens is a concave lens with a focal length f2 = -10.0 cm . The object to be photographed is 4.02 m in front of the objective lens. How far behind the concave lens should the film be placed What is the linear magnification of this lens combination?
Two converging lenses with focal lengths of 40 cmand 20 cm are 16 cm apart. A...
Two converging lenses with focal lengths of 40 cmand 20 cm are 16 cm apart. A 2.0 cm -tall object is 12 cm in front of the 40 cm -focal-length lens. image postion was calculated to be 78 cm Calculate the image height.
Two diverging lenses with focal lengths of 0.30m and 0.50m are separated by 0.20m. A red...
Two diverging lenses with focal lengths of 0.30m and 0.50m are separated by 0.20m. A red jellybean rests on the axis of the lenses 0.50m in front of the first lens. What is the location of the final image with respect to the second lens?
An object 4.3 mm high is on the optical axis of two lenses with focal lengths...
An object 4.3 mm high is on the optical axis of two lenses with focal lengths f1 = +5.0 cm, f2 = +10 cm. The object is 6.4 cm to the left of the first lens, and the second lens is 31 cm to the right of the first lens. Find the position (relative to the second lens) and the size of the final image by calculation.
An object 5.1 mm high is on the optical axis of two lenses with focal lengths...
An object 5.1 mm high is on the optical axis of two lenses with focal lengths f1 = +5.0 cm, f2 = +10 cm. The object is 6.7 cm to the left of the first lens, and the second lens is 32 cm to the right of the first lens. Find the position (relative to the second lens) and the size of the final image by calculation. position size
An object 5.2 mm high is on the optical axis of two lenses with focal lengths...
An object 5.2 mm high is on the optical axis of two lenses with focal lengths f1 = +5.0 cm, f2 = +10 cm. The object is 6.5 cm to the left of the first lens, and the second lens is 34 cm to the right of the first lens. Find the position (relative to the second lens) and the size of the final image by calculation. position size Find the position (relative to the second lens) and the size...
An object 4.1 mm high is on the optical axis of two lenses with focal lengths...
An object 4.1 mm high is on the optical axis of two lenses with focal lengths f1 = +5.0 cm, f2 = +10 cm. The object is 5.9 cm to the left of the first lens, and the second lens is 33 cm to the right of the first lens. Find the position (relative to the second lens) and the size of the final image by calculation. position -0.23 cm size Find the position (relative to the second lens) and...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT