Question

a circular ring of charge has a constant charge density of l0 is located on the...

  1. a circular ring of charge has a constant charge density of l0 is located on the x-y plane. Determine the vector electric field at a point P located on the z-axis. (Be sure to draw a diagram of the situation including the dq pieces of charge, r from the dq charge to point P and any other relevant quantities).
  1. Diagram                                                                                         (2 pt)
  2. Solution (Explain your solution, do not just write down answers.)                                                                                                               (6 pt)

Homework Answers

Answer #1

Dear student,

Find this solution, and RATE IT ,If you find it is helpful .your rating is very important to me.If any incorrectness ,kindly let me know I will rectify them soon.

Thanks for asking ..

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A circular ring of charge has a constant charge density of l0 is located on the...
A circular ring of charge has a constant charge density of l0 is located on the x-y plane. Determine the vector electric field at a point P located on the z-axis. (Be sure to draw a diagram of the situation including the dq pieces of charge, r from the dq charge to point P and any other relevant quantities). Diagram                                                                                         (2 pt) Solution (Explain your solution, do not just write down answers.)                                                                                                              (6 pt)
2. A circular ring with a radius R of 1 cm carries a charge density of...
2. A circular ring with a radius R of 1 cm carries a charge density of ?L = R sin ? (? is an azimuthal angle) µC/cm. The ring is then placed on the xy plane with its axis the same as the z-axis. Find the electric field intensity E and the electric potential V on point A on z-axis 2 cm from the xy plane.
A circular ring of charge, with radius R,is placed in the xy-plane and centered on the...
A circular ring of charge, with radius R,is placed in the xy-plane and centered on the origin. The linear charge density of the ring isλ=λ_o*cos^2(φ), where φ is the cylindrical polar coordinate such that any point in space is indicated by (r, φ, z). Find the electric potential anywhere on the z-axis as a function of z . Using this electric potential find the electric field anywhere on the z-axis also as a function of z
Q A thin arc is located in the xy-plane and contains a linear charge density of...
Q A thin arc is located in the xy-plane and contains a linear charge density of ρℓ = 4ε0 C/m. The arc dimensions are defined by ρ = 5 m and 0 ≤ φ ≤ π. Draw below the arc within its respective coordinate system. Also draw the position vector from a position along the arc to the point (0, 0, z) along the z-axis. Express mathematically the position vector from part (a). Use Coulomb’s law to find the electric...
A ring of charge with radius R = 1.5 m is centered on the origin in...
A ring of charge with radius R = 1.5 m is centered on the origin in the x-y plane. A positive point charge is located at the following coordinates: x = -10.1 m y = 16.8 m z = 17.1 m The point charge and the total charge on the ring are the same, Q = +22 C. Find the net electric field along the z-axis at z = 1.6 m. Enet x=? Enet y=? Enet z=? Thanks!!
Consider an infinite plane of charge with a charge density of +10 µC/m2. Assume that this...
Consider an infinite plane of charge with a charge density of +10 µC/m2. Assume that this plane is on the y-and z-axes. That is, assume it is perpendicular to the x-axis and that it passes through the origin. a) What would be the electric field strength and direction at the point (5 m, 0, 0)? The strength is___________N/C The direction is Answer: -x, x, -y, y, -z, or z b) What would be the electric field strength and direction at...
Consider a thin non conducting ring of radius a, which has a charge Q uniformly spread...
Consider a thin non conducting ring of radius a, which has a charge Q uniformly spread around it. Find an expression for the electric force vector on a point charge q placed at point P, which is located on the x axis of the ring at a distance of x from the center. Verbally explain your reasoning. Let x=6 cm and Q=6 microC. Calculate the magnitude (in N) and the direction of the elctric force
A circular cylinder with a radius R of 1 cm and a height H of 2...
A circular cylinder with a radius R of 1 cm and a height H of 2 cm carries a charge density of pv = h R^2 uC/cm^3 (h is a point on the z-axis). The cylinder is then placed on the xy plane with its axis the same as the z-axis. Find the electric field intensity E and and the electric potential V on point A on z-axis 2 cm from the top of the cylinder.
10. A circular cylinder with a radius R of 1 cm and a height H of...
10. A circular cylinder with a radius R of 1 cm and a height H of 2 cm carries a charge density of ρV = H r2 sin φ µC/cm3 (r is a point on the z-axis, φ is an azimuthal angle). The cylinder is then placed on the xy plane with its axis the same as the z-axis. Find the electric field intensity E and the electric potential V on point A on z-axis 2 cm from the top...
3) A thin ring made of uniformly charged insulating material has total charge Q and radius...
3) A thin ring made of uniformly charged insulating material has total charge Q and radius R. The ring is positioned along the x-y plane of a 3d coordinate system such that the center of the ring is at the origin of the coordinate system. (a) Determine an expression for the potential at an arbitrary location along the z-axis in terms of Q, R, and z. (b) Use this expression to determine an expression for the magnitude of the electric...