Question

An aluminum fin 1.6 mm thick surrounds a tube 2.5 cm in diameter. The length of...

An aluminum fin 1.6 mm thick surrounds a tube 2.5 cm in diameter. The length
of the fin is 12.5 mm. The tube-wall temperature is 200◦C, and the environment
temperature is 20◦C. The heat-transfer coefficient is 60 W/m2 · ◦C. Consider the heat dissipated in a pipe 1.20 m long if the fins are 4.2 mm apart from center to center

Explain your procedure with formulas

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Annular steel fins (k=56.7W/m· K) are attached to a steel tube that is 30mm in external...
Annular steel fins (k=56.7W/m· K) are attached to a steel tube that is 30mm in external diameter. The fins are 2mm thick and 15mm long. The tube wall temperature is 350K and the surrounding fluid temperature is 450K with a heat-transfer coefficient of 75W/m2 · K. There are 200 fins per meter of tube length. Calculate: (a) The fin efficiency. (b) The fin surface area per meter of tube length. (c) The prime surface area per meter of the tube...
A stainless-steel fin (k = 16 W/m. °C) has a length of 15 cm and a...
A stainless-steel fin (k = 16 W/m. °C) has a length of 15 cm and a square cross section 12.5 by 12.5 mm attached to a wall maintained at 250 °C. The heat-transfer coefficient is 40 W/m. °C, and the environment temperature is 90 °C. Calculate the percentage increase in heat transfer after attaching the fin.
A finned heat exchanger tube is made of aluminum alloy (k=186W/m· K) and contains 125 annular...
A finned heat exchanger tube is made of aluminum alloy (k=186W/m· K) and contains 125 annular fins per meter of tube length. The bare tube between fins has an OD of 50 mm. The fins are 4mm thick and extend 15mm beyond the external surface of the tube. The outer surface of the tube will be at 200◦C and the tube will be exposed to a fluid at 20◦C with a heat-transfer coefficient of 40W/m2 · K. Calculate: (a) The...
Consider an aluminum pin fin (k = 240 W/m·K) with a 2 mm by 2 mm...
Consider an aluminum pin fin (k = 240 W/m·K) with a 2 mm by 2 mm square cross-section and a length of 4 cm that is attached to a surface at 100o C. The fin is exposed to air at 25o C with a convection heat transfer coefficient of 20 W/m2 · o C. Determine the rate of heat transfer and the tip temperature of the fin for the following cases: (a) Convection from the fin tip. (b) Adiabatic tip...
A pin fin, fabricated from an aluminum alloy (k = 185 W/m K), has a diameter...
A pin fin, fabricated from an aluminum alloy (k = 185 W/m K), has a diameter of D = 3 mm and a length of L = 15 mm. Its base temperature is Tb = 100°C, and it is exposed to a fluid for which T∞ = 20°C and h = 50 W/m2 K. Provide a sketch and state your assumptions (1 point) Use Table 3.5 in the book (grading is based on the use of that particular table) to...
Used engine oil flows at 0.025 m/s through a 12.5-mm-diameter tube. The oil enters the tube...
Used engine oil flows at 0.025 m/s through a 12.5-mm-diameter tube. The oil enters the tube at a temperature of 27 ºC, while the tube surface temperature is maintained at 87º C. Determine the oil outlet temperature for a 100-m and the total heat transfer.
Pressurized Water is heated in a thin tube with a diameter of 60 mm. water enters...
Pressurized Water is heated in a thin tube with a diameter of 60 mm. water enters with a mass flow rate of 0.01 kg/s and an inlet temperature of 20°C. a uniform heat flux of 2000 W/m2 is applied to the tube. What is the required length of the tube to obtain an exit temperature of 80°C for the water? If the water reaches 80°C at the outlet, what is the surface temperature of the tube at the outlet?
A square aluminum plate 5 mm thick and 150 mm on a side is heated while...
A square aluminum plate 5 mm thick and 150 mm on a side is heated while vertically suspended in quiescent air at 75°C. Determine the average heat transfer coefficient for the plate when its temperature is 15°C by two methods: using results from the similarity solution to the boundary layer equations, and using results from an empirical correlation. The answer should be close to 5.78 and 5.92 W/m^2K Please show all work
An aluminum transmission line with a diameter of 20 mm has an electrical resistance of R'elec=...
An aluminum transmission line with a diameter of 20 mm has an electrical resistance of R'elec= 2.636 × 10-4 Ω/m and carries a current of 700 A. The line is subjected to frequent and severe cross winds, increasing the probability of contact between adjacent lines, thereby causing sparks and creating a potential fire hazard for nearby vegetation. The remedy is to insulate the line, but with the adverse effect of increasing the conductor operating temperature. (a) Calculate the conductor temperature...
Mercury at an inlet temperature of 75 °C flows through a 2 cm inside diameter tube...
Mercury at an inlet temperature of 75 °C flows through a 2 cm inside diameter tube at a flow rate of 1.5 kg/s. This tube is part of a nuclear reactor in which heat can be generated uniformly at any desired rate by adjusting the neutron flux level. Determine convection heat transfer coefficient, and the heat flux required for a 1.5 m length of tube required to raise the temperature of the mercury to 275 °C. Also determine if mercury...