Question

An object is placed at a distance of 1.33 metres from a convex lens that has...

An object is placed at a distance of 1.33 metres from a convex lens that has a focal length of 40 millimetres.

a) Where would you look (distance and apparent location from the lens) for a focused image to appear?

b) What orientation would the image appear: right-side-up or upside-down?

c) Determine the magnification of the image. Does your value confirm the answer in part b)?

d) If the object’s distance from the lens was shortened to 1.33 centimetres, how would the focused image change, including the magnification?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
        A) A real object is placed 8 cm in front of a convex lens with...
        A) A real object is placed 8 cm in front of a convex lens with a focal length of 12 cm. (a) Find the image distance. (b) What is the magnification of the image? (c) Describe the characters of the image.         B)   A real object is 6 cm in front of a concave lens whose focal length is -10 cm. (a) Find the image distance. (b) What is the magnification of the image? (c) Describe the characters of...
A 3 cm. "tall" object is placed 25 cm. from a convex lens with a focal...
A 3 cm. "tall" object is placed 25 cm. from a convex lens with a focal length of 50 cm. Determine at what distance a focused image will appear. Determine the height of this image. Create a sketch (ray diagram) showing the scenario described above labeled as “A” and a scenario where everything is the same except the focal length of the lens is changed to 12.5 cm.
An object is placed in front of a converging lens (convex lens) with a radius of...
An object is placed in front of a converging lens (convex lens) with a radius of curvature of 4.88 cm and focal length of 2.44 cm. An image is formed the object. (a) Calculate how far is the lens from the object if the image is real. (b) How far is image from the lens? (c) is the image upright or inverted, and is the image magnified or diminished? (d) Draw the ray diagram to confirm your result prediction.
A concave lens has a focal length of magnitude 10 cm. It is placed a distance...
A concave lens has a focal length of magnitude 10 cm. It is placed a distance of 25 cm from a concave mirror with a focal length of magnitude 15 cm. An object is set a distance of 22 cm in front of the lens. The observer is at the same location as the object, so the light from the object goes through the lens, reflects off the mirror, and comes back through the lens to the observer. Draw the...
A small object is placed to the left of a convex lens and on its optical...
A small object is placed to the left of a convex lens and on its optical axis. The object is 30 cm from the lens, which has a focal length of 49 cm. If the object is moved to a position 57 cm away, what will the image position be? (A positive value for p, or position, means the image is on the right side of the lens.) p = ? cm Describe the nature of this new image. (Select...
Consider a convex mirror with an object placed 20 cm away and a virtual image 15...
Consider a convex mirror with an object placed 20 cm away and a virtual image 15 cm into the mirror. The image appears to be 2 cm tall a) What is the focal length of the mirror? b) How large is the object? c) Adding a convex convex lens at a distance of 10 cm from the object (halfway between the object and the mirror), with a focal length of 6 cm, where would the final image appear? d) Removing...
when a lighted candle is placed at 68 cm to the left of a convex lens...
when a lighted candle is placed at 68 cm to the left of a convex lens of focal length F a real image is formed a distance d on the other side of the lens. When the object is move 32 cm closer to the lens of virtual images formed at a distance d on the side of the lens. question: calculate the focal length of the convex lens f in cm! helpwithin 5 mins and i will rate u!
A diverging lens has radius of focal length f = –10.0 cm. An object is placed...
A diverging lens has radius of focal length f = –10.0 cm. An object is placed a certain distance dO from the mirror along its principal axis. For each value of dO in the table, fill in (i) the distance dI from the lens to the image; (ii) the lateral magnification m of the image; (iii) whether the image is real or virtual; (iv) whether the image is on the same side of the lens as the object or the...
A 6.50 cm tall object is placed at a distance of 20.20 cm from a convex...
A 6.50 cm tall object is placed at a distance of 20.20 cm from a convex mirror. The distance from the mirror to its focal point is 10.40 cm. Find the magnification of the image formed by the mirror. Give your answer with 3 significant figures and make sure to include the correct sign.
A convex lens with a focal length of magnitude 4.0 cm and a concave lens with...
A convex lens with a focal length of magnitude 4.0 cm and a concave lens with a focal length of magnitude 10 cm are separated by a distance of 18 cm as shown in the diagram below. The convex lens is on the left, and the concave lens is on the right. An object is then placed 6.0 cm to the left of the convex lens. Locate the final image. State the distance of the final image to the right...