Question

A metal rod 0.83 m long moves with a speed of 2.3 m/s perpendicular to a...

A metal rod 0.83 m long moves with a speed of 2.3 m/s perpendicular to a magnetic field.

If the induced emf between the ends of the rod is 0.41 V , what is the strength of the magnetic field?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
In the figure, a conducting rod of length L = 35.0 cm moves in a magnetic...
In the figure, a conducting rod of length L = 35.0 cm moves in a magnetic field B?  of magnitude 0.490 T directed into the plane of the figure. The rod moves with speed v = 6.00 m/s in the direction shown. When the charges in the rod are in equilibrium, what is the magnitude E of the electric field within the rod? What is the magnitude Vba of the potential difference between the ends of the rod? What is the...
In the figure, a conducting rod of length L = 33.0 cm moves in a magnetic...
In the figure, a conducting rod of length L = 33.0 cm moves in a magnetic field B? of magnitude 0.550 T directed into the plane of the figure. The rod moves with speed v = 4.00 m/s in the direction shown. 1. When the charges in the rod are in equilibrium, what is the magnitude E of the electric field within the rod?   2.What is the magnitude Vba of the potential difference between the ends of the rod? 3.What...
In the figure, a conducting rod of length L = 27.0 cm moves in a magnetic...
In the figure, a conducting rod of length L = 27.0 cm moves in a magnetic field B of magnitude 0.350 T directed into the plane of the figure. The rod moves with speed v = 5.00 m/s in the direction shown. (Figure 1) 1.When the charges in the rod are in equilibrium, what is the magnitude E of the electric field within the rod? Express your answer in volts per meter to at least three significant figures. 2. What...
Consider a conducting rod of length 2.50 m immersed in a uniform magnetic field with strength...
Consider a conducting rod of length 2.50 m immersed in a uniform magnetic field with strength 4.00 T and oriented as shown in the figure. Assume that this rod is part of a closed conducting loop and is free to move. If this rod moves with speed 4.00 m/s in the +? − direction, what is the magnitude of the induced emf?
As shown in the figure below, a metal rod is pulled to the right at constant...
As shown in the figure below, a metal rod is pulled to the right at constant speed v, perpendicular to a uniform magnetic field directed out of the screen. The bar rides on frictionless metal rails connected through a resistor forming a complete circuit. The length of the bar between the rails is 5 cm, the magnitude of the magnetic field is 0.4 T, the resistor has a value of 10 Ω, and the speed of the bar to the...
Determine the emf of movement of a 20 cm long rod that is on a rail...
Determine the emf of movement of a 20 cm long rod that is on a rail and that moves with a speed of 45.0 cm / s. The rod and the rail are in a field 0.350 M magnetic
A proton moves at 8.00 ✕ 107 m/s perpendicular to a magnetic field. The field causes...
A proton moves at 8.00 ✕ 107 m/s perpendicular to a magnetic field. The field causes the proton to travel in a circular path of radius 0.750 m. What is the field strength (in T)?
A metal rod with a length of 30.0 cm lies in the xy-planeand makes an angle...
A metal rod with a length of 30.0 cm lies in the xy-planeand makes an angle of 36.9 ? with the positive x-axisand an angle of 53.1 ? with the positive y-axis. The rod is moving in the + x-direction with a speed of 4.90 m/s. The rod is in a uniform magnetic field B? =( 0.100 T )i^?( 0.290 T )j^?( 8.00×10?2 T )k^ A.) What is the magnitude of the emf induced in the rod?
A 5.0 cm long, 53 grams, thin metal strip is allowed to slide along two parallel...
A 5.0 cm long, 53 grams, thin metal strip is allowed to slide along two parallel rails (that contact it at its ends). A constant 0.76 T magnetic field acts perpendicular to the two rails. If the strip is pulled with a speed of 17.8 m/s an the rails are connected to each other through a 20 omega resistor, then find the induced current in the circuit. Assume that the rod and rails have negligible resistance.
A scalloped hammerhead shark swims at a steady speed of 1.1 m/s with its 87-cm-wide head...
A scalloped hammerhead shark swims at a steady speed of 1.1 m/s with its 87-cm-wide head perpendicular to the earth's 54 μT magnetic field. What is the magnitude of the emf induced between the two sides of the shark's head?