Question

An object of mass 5 kg is released from rest 24525 m above the ground and...

An object of mass 5 kg is released from rest 24525 m above the ground and allowed to fall under the influence of gravity. Assume the gravitational force is constant, with g=9.8 m/sec2 , and the force due to air resistance is proportional to the velocity of the object with proportionality constant k= 1 kg/sec. Approximate when (in seconds) the object will strike the ground.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An object of mass 120 kg is released from rest 480000 m above the ground and...
An object of mass 120 kg is released from rest 480000 m above the ground and allowed to fall under the influence of gravity. Assume the gravitational force is constant, with g=9.8 m/sec2 , and the force due to air resistance is proportional to the velocity of the object with proportionality constant k= 3 kg/sec. Approximate the speed (in m/sec) of the object when it strikes the ground.
A 200​-lb object is released from rest 500 ft above the ground and allowed to fall...
A 200​-lb object is released from rest 500 ft above the ground and allowed to fall under the influence of gravity. Assuming that the force in pounds due to air resistance is - 5​v, where v is the velocity of the object in​ ft/sec, determine the equation of motion of the object. When will the object hit the​ ground? Assume that the acceleration due to gravity is 32 ft/sec2 and let​ x(t) represent the distance the object has fallen in...
A parachutist whose mass 85 kg drops from a helicopter hovering 2500 m above the ground...
A parachutist whose mass 85 kg drops from a helicopter hovering 2500 m above the ground and falls toward the ground under the influence of gravity. Assume that the force due to air resistance is proportional to the velocity of the parachutist, with the proportionality constant b1=30 N-sec/m when the chute is closed and b2=100 N-sec/m when the chute is open. If the chute does not open until the velocity of the parachutist reaches 20 m/sec, after how many seconds...
Consider an object with mass m dropped from rest. Assume that air resistance is proportional to...
Consider an object with mass m dropped from rest. Assume that air resistance is proportional to the square of the velocity of the object, with positive proportionality constant k. Let v(t) be the velocity after t seconds, and let g be the acceleration of the object due to gravity. The corresponding initial value problem is mdv =mg−kv2; v(0)=0. dt (a) Solve the initial value problem. Your answer will be in terms of m, k, and g. (b) Compute lim v(t)....
A stone 0.44 kg mass is released from rest from a height of 29.4 m above...
A stone 0.44 kg mass is released from rest from a height of 29.4 m above the ground. Ignoring air resistance and letting the ground be the zero potential energy level, Determine the final kinetic energy of the stone using energy conservation principle only, not as a free fall. Determine the work done on the stone by gravity.
12. A m = 71.2 kg object is released from rest at a distance h =...
12. A m = 71.2 kg object is released from rest at a distance h = 0.713515 R above the Earth’s surface. The acceleration of gravity is 9.8 m/s 2 . For the Earth, RE = 6.38 × 106 m, M = 5.98 × 1024 kg. The gravitational acceleration at the surface of the earth is g = 9.8 m/s 2 . Find the speed of the object when it strikes the Earth’s surface. Neglect any atmospheric friction. Caution: You...
1. A raindrop of mass m falls while receiving resistance. Gravitational acceleration is g and it...
1. A raindrop of mass m falls while receiving resistance. Gravitational acceleration is g and it falls to the ground at the final velocity. (1) Find the final velocity of raindrops when the resistance is air resistance that is proportional to the square of the velocity. Let b be the constant of proportionality. (2) Find the final velocity of raindrops when the resistance is a viscous resistance proportional to velocity. Let β be the constant of proportionality.
When the velocity v of an object is very​ large, the magnitude of the force due...
When the velocity v of an object is very​ large, the magnitude of the force due to air resistance is proportional to v squared with the force acting in opposition to the motion of the object. A shell of mass 5 kg is shot upward from the ground with an initial velocity of 800 ​m/sec. If the magnitude of the force due to air resistance is ​(0.1​)v squared​, when will the shell reach its maximum height above the​ ground? What...
An object with a mass m = 3.5 kg is released from rest at the top...
An object with a mass m = 3.5 kg is released from rest at the top of the ramp. The length of the ramp is 4 m. The object slides down the ramp reaching a speed of 1.8 m/s at the bottom. (a) How much time (in sec) does it take the object to reach the bottom of the ramp? (use kinematics equations) (b) What is the acceleration of the object (in m/s2 )? (use kinematics equations) (c) If the...
An object of mass m = 10 kg is released from a height of 2 m...
An object of mass m = 10 kg is released from a height of 2 m on top of a vertically aligned spring with spring constant k = 1000 N/m. The relaxed length of the spring is 1 m and the lower end is attached on a rigid level surface. Assume that the spring is massless and ideal; and neglect air-resistance. Calculate the maximum compression and extension of the spring after the released object falls on top of the spring....