Question

a coil of 82 turns is 68.18x10^-3 m in radius and has its plane perpendicular to...

a coil of 82 turns is 68.18x10^-3 m in radius and has its plane perpendicular to a 8 T magnetic field produced by a nearby electromagnet.

Ther current in the electromagnet is turned off leading the field to disappear and causing an emf to be induced in the coil. if it takes 17 x 10^-3 seconds for the field to disappear.

calculate magnitude of the emf induced in the coil in units of V.  

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
9. A magnetic field is perpendicular to the plane of a single-turn circular coil. The magnitude...
9. A magnetic field is perpendicular to the plane of a single-turn circular coil. The magnitude of the field is changing, so that an emf of 0.77 V and a current of 2.7 A are induced in the coil. The wire is then re-formed into a single-turn square coil, which is used in the same magnetic field (again perpendicular to the plane of the coil and with a magnitude changing at the same rate). What emf is induced in the...
A magnetic field is perpendicular to the plane of a single-turn circular coil. The magnitude of...
A magnetic field is perpendicular to the plane of a single-turn circular coil. The magnitude of the field is changing, so that an emf of 0.23 V and a current of 2.4 A are induced in the coil. The wire is then re-formed into a single-turn square coil, which is used in the same magnetic field (again perpendicular to the plane of the coil and with a magnitude changing at the same rate). What (a) emf and (b) current are...
A flat circular coil with 96 turns, a radius of 3.72 10-2 m, and a resistance...
A flat circular coil with 96 turns, a radius of 3.72 10-2 m, and a resistance of 0.432 Ω is exposed to an external magnetic field that is directed perpendicular to the plane of the coil. The magnitude of the external magnetic field is changing at a rate of ΔB/Δt = 0.837 T/s, thereby inducing a current in the coil. Find the magnitude of the magnetic field at the center of the coil that is produced by the induced current.
A five-turn circular wire coil of radius 0.425 m lies in a plane perpendicular to a...
A five-turn circular wire coil of radius 0.425 m lies in a plane perpendicular to a uniform magnetic field of magnitude 0.370 T. If the wire is reshaped from a five-turn circle to a three-turn circle in 0.101 s (while remaining in the same plane), what is the average induced emf in the wire during this time?
A 37-turn circular coil of radius 4.60 cm and resistance 1.00 Ω is placed in a magnetic field directed perpendicular to...
A 37-turn circular coil of radius 4.60 cm and resistance 1.00 Ω is placed in a magnetic field directed perpendicular to the plane of the coil. The magnitude of the magnetic field varies in time according to the expression B = 0.010 0t + 0.040 0t2, where B is in teslas and t is in seconds. Calculate the induced emf in the coil at t = 4.20 s.
3. Consider a coil with (6 +A) turns and a radius of (3.60 + B) cm....
3. Consider a coil with (6 +A) turns and a radius of (3.60 + B) cm. If a magnetic field at an angle of 35o to the plane of the coil is changed from 0 T to 1.25 T in (12.0 + C) seconds, what is the induced EMF in the coil? Give your answer in milli-volts (mV) and rounded to three significant figures. A. 8 B. 1 C.12
Consider a circular coil of radius 13.8 cm and consisting of 11 turns. The coil is...
Consider a circular coil of radius 13.8 cm and consisting of 11 turns. The coil is placed in a varying magnetic field that changes uniformly from 5.34 T to 2.7 T in an interval of 12 seconds. If the axis of the coil makes an angle of 13O to the magnetic field: a) Calculate the induced emf in the coil. b) If the angle that the coil makes with the magnetic field is charge to 67.4O, what would the radius...
A flat, circular coil has 40 turns of radius 3.6 cm. At t=0 an external magnetic...
A flat, circular coil has 40 turns of radius 3.6 cm. At t=0 an external magnetic field perpendicular to the plane of the coil has a value of 0.32 T and is decreasing linearly with time. At t = 0, the induced emf is 65 mV. How long does it take for the field to reach zero?
A tightly wound circular coil has 43 turns, each of radius 0.165 m. A uniform magnetic...
A tightly wound circular coil has 43 turns, each of radius 0.165 m. A uniform magnetic field is introduced perpendicularly to the plane of the coil. If the field increases in strength from 0 to 0.297 T in 0.435s, what average emf is induced in the windings of the coil?
A coil 5.00 cm in radius, containing 250 turns, is placed in a uniform magnetic field...
A coil 5.00 cm in radius, containing 250 turns, is placed in a uniform magnetic field that varies with time according to: B = (0.230 T/s)t + (4.00 x 10-5 T/s5)t5.  The coil is connected to a 450 ohm resistor, and its plane is perpendicular to the magnetic field.  The resistance of the coil can be neglected.  Find the induced emf in the coil as a function of time.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT