Question

At a party, you notice a disco ball (a hollow sphere of mass 0.50 kg and...

At a party, you notice a disco ball (a hollow sphere of mass 0.50 kg and radius 15 cm) attached to a thin rod of mass 2.5 kg and length 0.50 m. The disco ball has come loose and is oscillating about a pivot at the top of the rod in a vertical plane as shown. You time the number of oscillations per second and find this frequency is closest to:

Homework Answers

Answer #1

#Hi, if you are happy and find this useful please thumbs up. In case, if you have any query regarding the solution please let me know in the comments section below. We can discuss. Thanks!!

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider a thin rod of length L=2.58m and mass m1=1.27 kg, and a hollow (empty) sphere...
Consider a thin rod of length L=2.58m and mass m1=1.27 kg, and a hollow (empty) sphere of radius R=0.16 m and mass of m2=0.82 kg. Sphere is at one end of the rod and the other end of the rod is fixed and oscillate like a pendulum (simple harmonic oscillations, SHM) with small-angle oscillations. When ? ?? ?????, ???? ≈ ?. a) Derive a second order differential equation for this pendulum to confirm the oscillation is SHM.(b) Compare the above...
A thin, cylindrical rod ℓ = 27.0 cm long with a mass m = 1.20 kg...
A thin, cylindrical rod ℓ = 27.0 cm long with a mass m = 1.20 kg has a ball of diameter d = 10.00 cm and mass M = 2.00 kg attached to one end. The arrangement is originally vertical and stationary, with the ball at the top as shown in the figure below. The combination is free to pivot about the bottom end of the rod after being given a slight nudge. Calculate the M.I of flywheel in moon...
A thin, cylindrical rod ℓ = 27.0 cm long with a mass m = 1.20 kg...
A thin, cylindrical rod ℓ = 27.0 cm long with a mass m = 1.20 kg has a ball of diameter d = 10.00 cm and mass M = 2.00 kg attached to one end. The arrangement is originally vertical and stationary, with the ball at the top as shown in the figure below. The combination is free to pivot about the bottom end of the rod after being given a slight nudge. (a) After the combination rotates through 90...
A tennis ball is a hollow sphere with a thin wall. It is set rolling without...
A tennis ball is a hollow sphere with a thin wall. It is set rolling without slipping at 4.10 m/s on a horizontal section of a track as shown in the figure below. It rolls around the inside of a vertical circular loop of radius r = 48.1 cm. As the ball nears the bottom of the loop, the shape of the track deviates from a perfect circle so that the ball leaves the track at a point h =...
A hollow ball of mass 6.00 kg and radius 0.180 m is rolled up a hill...
A hollow ball of mass 6.00 kg and radius 0.180 m is rolled up a hill without slipping. If it starts off at the bottom with a linear speed of 7.00 m/s, what vertical height (in m) will it reach?
A uniform hollow spherical ball of mass 1.75 kg and radius 40.0 cm is rolling up...
A uniform hollow spherical ball of mass 1.75 kg and radius 40.0 cm is rolling up a ramp that rises at 30.0° above the horizontal. Speed of the ball at the base of the ramp is 8.20 m/s. Moment of inertia of 2 hollow sphere is given by I=(2/3)m r . (a) What is the angular velocity of the ball at the base of the ramp? (b) Determine how far up the ramp does it roll before it starts to...
A uniform hollow spherical ball of mass 1.75 kg and radius 40.0 cm is rolling up...
A uniform hollow spherical ball of mass 1.75 kg and radius 40.0 cm is rolling up a ramp that rises at 30.0° above the horizontal. Speed of the ball at the base of the ramp is 8.20 m/s. Moment of inertia of hollow sphere is given by I=(2/3)m r2. (a) What is the angular velocity of the ball at the base of the ramp? (b) Determine how far up the ramp does it roll before it starts to roll downward....
A hollow ball of mass 2.88 kg and radius 0.309 m sits at rest on top...
A hollow ball of mass 2.88 kg and radius 0.309 m sits at rest on top of a hill of height 6.88 m. The ball can either slide down the hill without rolling or roll down without slipping. What is the difference in the ball's speed (in m/s) at the bottom of the hill between these two scenarios?
A hollow sphere (mass 8.8 kg, radius 54.8 cm) is rolling without slipping along a horizontal...
A hollow sphere (mass 8.8 kg, radius 54.8 cm) is rolling without slipping along a horizontal surface, so its center of mass is moving at speed vo. It now comes to an incline that makes an angle 56o with the horizontal, and it rolls without slipping up the incline until it comes to a complete stop. Find a, the magnitude of the linear acceleration of the ball as it travels up the incline, in m/s2.
The figure shows a ball with mass m = 0.450 kg attached to the end of...
The figure shows a ball with mass m = 0.450 kg attached to the end of a thin rod with length L = 0.415 m and negligible mass. The other end of the rod is pivoted so that the ball can move in a vertical circle. The rod is held horizontally as shown and then given enough of a downward push to cause the ball to swing down and around and just reach the vertically upward position, with zero speed...