Question

A solid spherical charge insulator of radius R carries a uniform charge density of p. A)...

A solid spherical charge insulator of radius R carries a uniform charge density of p.

A) Derive an equation for the electric field as a function of the radical position inside the sphere using electric flux and a Gaussian surface of variable radius.

B) Derive an equation for the electric field as a function of the radial position outside the sphere.

C) Multiply your results from parts A and B with some test charge, are these results consistent with
coulombs law?

D) Sketch a graph of your results from parts A and B.

E) Redraw the graph if it was a conductor of the same shape and size, carrying the same total charge.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A solid spherical no-conductor of radius 14.5cm has a uniform charge density of p=3.70uC/m**3 (a) Find...
A solid spherical no-conductor of radius 14.5cm has a uniform charge density of p=3.70uC/m**3 (a) Find the magnitude of the electric field af a distance of 8.5 cm from the center of the sphere. B-find the electric field at a distance of 21.0 cm from the center of the sphere C-Now consider a solid sphere conductor of same radius with the same total charge as the non conductor sphere in part (a) Find the electric field at the two distance...
A hollow, spherical, ideal insulator (R=0.075m) has a net charge of +3.75μC, with the charge is...
A hollow, spherical, ideal insulator (R=0.075m) has a net charge of +3.75μC, with the charge is distributed uniformly throughout its volume A- Calculate the total electric flux though a “Gaussian” sphere (with radius r=0.065m) centered on the center of the charged sphere. B- Find the magnitude and direction of the electric field at a point, r=0.115m, directly below the center of the sphere.
A) A 1 nano Coulomb spherical charge has a radius of 10 centimeters. The charge is...
A) A 1 nano Coulomb spherical charge has a radius of 10 centimeters. The charge is uniformly distributed throughout the volume of the sphere.   Find the electric flux through a spherical gaussian surface centered on the charge with a radius of 1 meter. Answer in units of (N*m^2)/C. B) Same as part A, but let the Gaussian surface be a 1 meter cube centered on the charge. C) What is the strength of the E field on the surface of...
10. A spherical conductor of radius R = 1.5cm carries the charge of 45μ, (a) What...
10. A spherical conductor of radius R = 1.5cm carries the charge of 45μ, (a) What is the charge density (ρ) of the sphere? (b) Calculate the electric field at a point r = 0.5cm from the center of the sphere. (c) What is the electric field on the surface of the sphere? 11. Two capacitors C1 and C2 are in series with a voltage V across the series combination. Show that the voltages V1 and V2 across C1 and...
A solid spherical nonconductor with a radius of 0.25m contains an interior charge density (Q/V) of...
A solid spherical nonconductor with a radius of 0.25m contains an interior charge density (Q/V) of 1.00*10-6 r3 C/m3 where r is the distance from the center of the sphere. a) Determine an expression for the total charge within a radius r less than or equal to 0.25m b) Determine an expression for the total charge contained within the nonconducting sphere c) Using Gauss' Law find an expression for the magnitude of the electric field within the sphere as a...
A solid insulating sphere of radius a = 2 cm carries a net positive charge Q...
A solid insulating sphere of radius a = 2 cm carries a net positive charge Q = 9 nC uniformly distributed throughout its volume. A conducting spherical shell of inner radius b = 4 cm and outer radius c = 6 cm is concentric with the solid sphere and carries an initial net charge 2Q. Find: a. the charge distribution on the shell when the entire system is in electrostatic equilibrium. b. theelectricfieldatpoint:(i)AwithrA =1cm,(ii)BwithrB =3cm,(iii)CwithrC =5cm from the center of...
A +22.5 nC point charge is surrounded by a concentric conducting spherical shell of radius 2.40...
A +22.5 nC point charge is surrounded by a concentric conducting spherical shell of radius 2.40 cm that carries a charge of ?31.0 nC. Derive expressions for the electric field as a function of radial distance both inside and outside the shell? E(r < 2.40 cm) = N/C, direction ---Select--- radially inward radially outward E(r > 2.40 cm) =   N/C, direction ---Select--- radially inward radially outward
A solid sphere of radius 50.0 cm has a charge of 12.0 uC.  If the charge density...
A solid sphere of radius 50.0 cm has a charge of 12.0 uC.  If the charge density varies with radial distance according to the equation p=kr, where k is a constant: A) find the electric field at 30.0 cm from the sphere's center. B) find the electric field at 60.0 cm from the sphere's center.
A solid sphere of nonconducting material has a uniform positive charge density ρ (i.e. positive charge...
A solid sphere of nonconducting material has a uniform positive charge density ρ (i.e. positive charge is spread evenly throughout the volume of the sphere; ρ=Q/Volume). A spherical region in the center of the solid sphere is hollowed out and a smaller hollow sphere with a total positive charge Q (located on its surface) is inserted. The radius of the small hollow sphere R1, the inner radius of the solid sphere is R2, and the outer radius of the solid...
A solid sphere of radius R has a uniform volumetric charge density rho = −3C /...
A solid sphere of radius R has a uniform volumetric charge density rho = −3C / 2πR ^ 3. Calculate the electric field inside and outside the sphere.