Question

A copper wire has a square cross section 3.0 mm on a side. The wire is...

A copper wire has a square cross section 3.0 mm on a side. The wire is 3.8 m long and carries a current of 3.5 A. The density of free electrons is 8.5×1028m−3.

A) Find the magnitude of the electric field in the wire.

Express your answer in volts per meter.

B) How much time is required for an electron to travel the length of the wire?

Express your answer in seconds

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 1.0 m length of copper wire has a cross-sectional area of 0.4x10-6 m2 and carries...
A 1.0 m length of copper wire has a cross-sectional area of 0.4x10-6 m2 and carries a current of 50 mA (a fairly typical amount of current). What is the current density magnitude in this wire? What is the electron drift speed in this wire? How long will It take for an electron to travel the length of the wire (traveling at the speed you just calculated)? What is the magnitude of the electric field inside the wire?
Copper has 8.5 x10^28 electrons per m^3 . A 71 cm length of copper wire of...
Copper has 8.5 x10^28 electrons per m^3 . A 71 cm length of copper wire of diameter 2.05 mm carries 4.85A of current. ( For copper: ρ = 1.72 x 10^-8 ohm-m) a. How much time does it take an electron to travel the length of the wire ? b. Find the electric field inside the wire. c. What is the resistance of this wire?
A 2.3 mm -diameter copper wire carries a 38 A current (uniform across its cross section)....
A 2.3 mm -diameter copper wire carries a 38 A current (uniform across its cross section). a) Determine the magnetic field at the surface of the wire. b) Determine the magnetic field inside the wire, 0.50 mm below the surface. c)Determine the magnetic field outside the wire 2.5 mm from the surface.
A length of copper wire carries a current of 14 A, uniformly distributed through its cross...
A length of copper wire carries a current of 14 A, uniformly distributed through its cross section. Calculate the energy density of (a) the magnetic field and (b) the electric field at the surface of the wire. The wire diameter is 2.6 mm, and its resistance per unit length is 2.7 Ω/km.
A 3.3-mm copper wire carries a 16-A current (uniform across its cross section). Determine the magnetic...
A 3.3-mm copper wire carries a 16-A current (uniform across its cross section). Determine the magnetic field a) at the surface of the wire, (b) inside the wire, 0.66 mm below the surface,   mT (c) and outside the wire 3.3 mm from the surface. mT
A copper wire with diameter of 1,5 mm and length of 4m carries constant current of...
A copper wire with diameter of 1,5 mm and length of 4m carries constant current of 1.75 A. The free electron density in the wire is 8,5x1028 m-3. The resistivity of copper is 1,72x10-8 capital omega.m. Calculate a) current density, b)drift velocity, c) magnitude of electric field, d) potential between the terminals of wire, e)power dissipated as heat f) mean free time. (mass of electron: 9,1x10-31kg, magnitude of charge of electron: 1,6x10-19 C)
A copper wire with diameter of 1,5 mm and length of 4m carries constant current of...
A copper wire with diameter of 1,5 mm and length of 4m carries constant current of 1.75 A. The free electron density in the wire is 8,5x1028 m-3. The resistivity of copper is 1,72x10-8 .m. Calculate   a) current density, b)drift velocity, c) magnitude of electric field, d) potential between the terminals of wire, e)power dissipated as heat f) mean free time. (mass of electron: 9,1x10-31kg, magnitude of charge of electron: 1,6x10-19 C)
A 3.00 m long copper wire has a 1.20 m long section with a 1.60 mm...
A 3.00 m long copper wire has a 1.20 m long section with a 1.60 mm diameter and a 1.80 m long section with a 0.80 mm diameter. The electric current is 2.5 mA (milli Amps) in the 1.60 mm diameter section. The electrical resistivity of copper is 1.68 x 10^-8 Ω m. a) (10pts) What is the current density in the 1.60 mm diameter section? b) (10pts) What is the magnitude of the electric field in N / C...
A 7.2 mm diameter conducting wire carries a current of 3.8 A. If the density of...
A 7.2 mm diameter conducting wire carries a current of 3.8 A. If the density of the conduction electrons (free electrons) in the wire is n=19.6×1028m-3, determine the magnitude of the drift velocity of the electrons within the wire. Express your answer in units of μm/s (micrometers per second) using one decimal place. Take the charge of the electron e=1.6×10-19C.
A copper wire that has a diameter of 2.00 mm carries a current of 10.0 A....
A copper wire that has a diameter of 2.00 mm carries a current of 10.0 A. Assuming that each copper atom contributes one free electron to the metal, calculate the drift speed of the electrons in the wire. The molar mass of copper is 63.5 g/mol and the density of copper is 8.95 g/cm3.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT