Question

A string oscillates according to the equation y´ = (0.472 cm) sin[(?/3.0 cm-1)x] cos[(43.4 ? s-1)t]....

A string oscillates according to the equation
y´ = (0.472 cm) sin[(?/3.0 cm-1)x] cos[(43.4 ? s-1)t].
What are the (a) amplitude and (b) speed of the two waves (identical except for direction of travel) whose superposition gives this oscillation? (c) What is the distance between nodes? (d) What is the transverse speed of a particle of the string at the position x = 1.55 cm when t = 1.31 s?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A string oscillates according to the equation y´ = (0.370 cm) sin[(π/3.0 cm-1)x] cos[(45.4 π s-1)t]....
A string oscillates according to the equation y´ = (0.370 cm) sin[(π/3.0 cm-1)x] cos[(45.4 π s-1)t]. What are the (a) amplitude and (b) speed of the two waves (identical except for direction of travel) whose superposition gives this oscillation? (c) What is the distance between nodes? (d) What is the transverse speed of a particle of the string at the position x = 1.72 cm when t = 1.12 s?
A string oscillates according to the equation y´ = (0.369 cm) sin[(π/3.0 cm-1)x] cos[(57.6 π s-1)t]....
A string oscillates according to the equation y´ = (0.369 cm) sin[(π/3.0 cm-1)x] cos[(57.6 π s-1)t]. What are the (a) amplitude and (b) speed of the two waves (identical except for direction of travel) whose superposition gives this oscillation? (c) What is the distance between nodes? (d) What is the transverse speed of a particle of the string at the position x = 1.50 cm when t = 1.30 s?
A string oscillates according to the equation y´ = (0.275 cm) sin[(π/2.0 cm-1)x] cos[(39.6 π s-1)t]....
A string oscillates according to the equation y´ = (0.275 cm) sin[(π/2.0 cm-1)x] cos[(39.6 π s-1)t]. What are the (a) amplitude and (b) speed of the two waves (identical except for direction of travel) whose superposition gives this oscillation? (c) What is the distance between nodes? (d) What is the transverse speed of a particle of the string at the position x = 1.60 cm when t = 1.03 s?
A string oscillates according to the equation y´ = (0.158 cm) sin[(π/6.0 cm-1)x] cos[(36.1 π s-1)t]....
A string oscillates according to the equation y´ = (0.158 cm) sin[(π/6.0 cm-1)x] cos[(36.1 π s-1)t]. What are the (a) amplitude and (b) speed of the two waves (identical except for direction of travel) whose superposition gives this oscillation? (c) What is the distance between nodes? (d) What is the transverse speed of a particle of the string at the position x = 1.28 cm when t = 1.47 s? (a) Number Enter your answer for part (a) in accordance...
A wave on a string is described by the equation y(x,t)=3.0 cm*〖cos(〗⁡〖2π*(x/2.4m+t/(0.2 s)))〗 . X is...
A wave on a string is described by the equation y(x,t)=3.0 cm*〖cos(〗⁡〖2π*(x/2.4m+t/(0.2 s)))〗 . X is in meters and t is in seconds. Is the wave travelling to the right or to the left? _________ What is the wave speed? _________ What is the wave frequency? __________ What is the wavelength? ___________ At t=0.50 seconds what is the displacement of the string at x=0.20 meters. _________
A standing wave on a string fixed at both ends is described by y(x,t)=2 sin((π/3)x)cos((π/3)t), where...
A standing wave on a string fixed at both ends is described by y(x,t)=2 sin((π/3)x)cos((π/3)t), where x and y are given in cm and time t is given in s. Answer the following questions a) Find the two simplest travelling waves which form the above standing wave b) Find the amplitude, wave number, frequency, period and speed of each wave(Include unit in the answer) c) When the length of the string is 12 cm, calculate the distance between the nodes...
A wave on a string has a displacement according to the equation: y(x,t) = 25.0 cm...
A wave on a string has a displacement according to the equation: y(x,t) = 25.0 cm sin ((36.0/m)x – (8.00/sec)t) Determine the amplitude, frequency, period, velocity, and wavelength of the wave. Find the maximum x. Also determine the transverse velocity at t = 0.16 sec and x's maximum.
The equation of a transverse wave traveling along a very long string is y = 4.60...
The equation of a transverse wave traveling along a very long string is y = 4.60 sin(0.0684πx+ 2.07πt), where x and y are expressed in centimeters and t is in seconds. Determine (a) the amplitude, (b) the wavelength, (c) the frequency, (d) the speed, (e) the direction of propagation of the wave and (f) the maximum transverse speed of a particle in the string. (g) What is the transverse displacement at x = 8.64 cm when t = 0.375 s?
a. Find the speed of a wave on a string given by y(x,t)=(3.00 mm) sin [(7.0/s)t...
a. Find the speed of a wave on a string given by y(x,t)=(3.00 mm) sin [(7.0/s)t -(4.00/m)x) ] . b. What can you do to increase the speed of the wave? c. What is the vertical speed of the string at a point located 0.2m away from the origin at time 0.3s? d. A wave given by y(x,t)=(3.00 mm) sin [(7.0/s)t -(4.00/m)x+pi/2 ] is created on another identical string. What is different and what is the same in these two...
7. A wave on a string has a displacement according to the equation: y(x,t) = 25.0...
7. A wave on a string has a displacement according to the equation: y(x,t) = 25.0 cm sin ((36.0/m)x – (8.00/sec)t) Determine the amplitude, frequency, period, velocity, and wavelength of the wave. Also determine the transverse velocity at t = 0.16 sec.