Question

A 310 turn solenoid with a length of 23.0 cm and a radius of 1.60 cm...

A 310 turn solenoid with a length of 23.0 cm and a radius of 1.60 cm carries a current of 1.85 A. A second coil of four turns is wrapped tightly around this solenoid, so it can be considered to have the same radius as the solenoid. The current in the 310 turn solenoid increases steadily to 5.00 A in 0.900 s.

(a) Use Ampere's law to calculate the initial magnetic field in the middle of the 310 turn solenoid.
T

(b) Calculate the magnetic field of the 310 turn solenoid after 0.900 s.
T

(c) Calculate the area of the 4-turn coil.
m2

(d) Calculate the change in the magnetic flux through the 4-turn coil during the same period.
Wb

(e) Calculate the average induced emf in the 4-turn coil.
V

Is it equal to the instantaneous induced emf? Explain.


(f) Why could contributions to the magnetic field by the current in the 4-turn coil be neglected in this calculation?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 400 turn solenoid with a length of 20 cm and a radius of 3.0 cm...
A 400 turn solenoid with a length of 20 cm and a radius of 3.0 cm carries a current of 3.0 A. A second coil of four turns is wrapped tightly about this solenoid so that it can be considered to have the same radius as the solenoid. Find the following when the current in the solenoid increases to 5.0 A in a period of 0.90 s. (a) the change in the magnetic flux through the coil _______T·m2 (b) the...
a) A 550-turn solenoid, 28 cm long, has a diameter of 2.3 cm . A 15-turn...
a) A 550-turn solenoid, 28 cm long, has a diameter of 2.3 cm . A 15-turn coil is wound tightly around the center of the solenoid. If the current in the solenoid increases uniformly from 0 to 4.6 A in 0.60 s , what will be the induced emf in the short coil during this time? b) A 15.5-cm-diameter loop of wire is initially oriented perpendicular to a 1.4-T magnetic field. The loop is rotated so that its plane is...
A 370 turn solenoid of length 37.0 cm and radius 3.30 cm carries a current of...
A 370 turn solenoid of length 37.0 cm and radius 3.30 cm carries a current of 5.20 A. Find the following. (a) the magnetic field strength inside the coil at its midpoint mT (b) the magnetic flux through a circular cross-sectional area of the solenoid at its midpoint T · m2
A 400 turn solenoid , 30 cm long has a diameter of 1.5 cm. A 20...
A 400 turn solenoid , 30 cm long has a diameter of 1.5 cm. A 20 turn coil is tightly wound around the center of the solenoid. If the current in the solenoid increases uniformly from 0.0 A to 4.50 A in 0.3 s, what will be the induced emf in the short coil during this time?
A circular conducting loop of radius 23.0 cm is located in a region of the homogeneous...
A circular conducting loop of radius 23.0 cm is located in a region of the homogeneous magnetic field of magnitude 0.900 T pointing perpendicular to the plane of the loop. The loop is connected in series with a resistor of 229 Ω. The magnetic field is now increased at a constant rate by a factor of 2.60 in 29.0s. Calculate the magnitude of the induced emf in the loop while the magnetic field is increasing.
A solenoid of lenght 35 cm has 380 turns of radius 2.6 cm. A tightly wound...
A solenoid of lenght 35 cm has 380 turns of radius 2.6 cm. A tightly wound coil with 16 turns of radius 4.8 cm is placed around the solenoid. The axes of the coil and solenoid coincide. Find the emf induced in the coil if the current in the solenoid varies according to I=5.4sin(100πt) A.
1. A long, current-carrying solenoid with an air core has 1650 turns per meter of length...
1. A long, current-carrying solenoid with an air core has 1650 turns per meter of length and a radius of 0.0220 m. A coil of 100 turns is wrapped tightly around the outside of the solenoid, so it has virtually the same radius as the solenoid. What is the mutual inductance of this system? 2. A generator uses a coil that has 360 turns and a 0.53-T magnetic field. The frequency of this generator is 60.0 Hz, and its emf...
A 22-turn circular coil of radius 5.00 cm and resistance 1.00 ? is placed in a...
A 22-turn circular coil of radius 5.00 cm and resistance 1.00 ? is placed in a magnetic field directed perpendicular to the plane of the coil. The magnitude of the magnetic field varies in time according to the expression B = 0.010 0t + 0.040 0t2, where B is in teslas and t is in seconds. Calculate the induced emf in the coil at t = 5.40 s. mV
a) A solenoid of radius 4 cm, 3100 turns, and a length of 7 cm is...
a) A solenoid of radius 4 cm, 3100 turns, and a length of 7 cm is carrying a current that alternates according to the formula I(t)=I0cos(2πft) where the peak current is I0=1500 mA and the frequency is f=70 Hz. What is the RMS EMF induced by the fluctuating current? b) What is the RMS strength of the electric field that corresponds to the induced EMF? c) What is the RMS electric field strength at a distance 6 cm from the...
The magnetic field measured with a Teslameter (or Gaussmeter) at the center of a solenoid is...
The magnetic field measured with a Teslameter (or Gaussmeter) at the center of a solenoid is 3.0 mT when a current of 0.3 A is flowing through it. The length of the solenoid is 15.0 cm. (a) Calculate the number of turns in the solenoid. (b) To produce magnetic field of 1.5 T at the center of the solenoid, how much current is needed? (c) If the diameter of the solenoid is 5.0 cm and a 10-turn coil with average...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT