Question

For the ground-level harmonic oscillator wave function given by ?(x)=Cexp(?mk??x22?), |?|^2 has a maximum at x=0....

For the ground-level harmonic oscillator wave function given by ?(x)=Cexp(?mk??x22?), |?|^2 has a maximum at x=0.

a. Compute the ratio of |?|^2 at x=+A to |?|^2 at x=0, where A is given by 12/k?A^2=(n+1/2)?? with n=0 for the ground level.

b. Compute the ratio of |?|2 at x=+2A to |?|^2 at x=0.

Homework Answers

Answer #1

The ground state wave function is

where

where c is the normalization constant

The turning point is given the point where the energy is equal to the potential energy

Hence the positive turning point is

a) Therefore the wave function at x = 0 is

and hence

Wavefunction at the turning point is

Therefore

Hence the ratio is

b) Note that

And hence

Therefore the ratio is

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A particle in a simple harmonic oscillator potential V (x) = 1 /2mω^2x^2 has an initial...
A particle in a simple harmonic oscillator potential V (x) = 1 /2mω^2x^2 has an initial wave function Ψ(x,0) = (1/ √10)(3ψ1(x) + ψ2(x)) , where ψ1 and ψ2 are the stationary state solutions of the first and second energy level. Using raising and lowering operators (no explicit integrals except for orthonomality integrals!) find <x> and <p> at t = 0
To generate the excited states for the quantum harmonic oscillator, one repeatedly applies the raising operator...
To generate the excited states for the quantum harmonic oscillator, one repeatedly applies the raising operator ˆa+ to the ground state, increasing the energy by ~ω with each step: ψn = An(ˆa+) nψ0(x) with En = (n + 1 2 )~ω where An is the normalization constant and aˆ± ≡ 1 √ 2~mω (∓ipˆ+ mωxˆ). Given that the normalized ground state wave function is ψ0(x) = mω π~ 1/4 e − mω 2~ x 2 , show that the first...
A simple harmonic oscillator has a frequency of 11.1 Hz. It is oscillating along x, where...
A simple harmonic oscillator has a frequency of 11.1 Hz. It is oscillating along x, where x(t) = A cos(ωt + δ). You are given the velocity at two moments: v(t=0) = 1.9 cm/s and v(t=.1) = -18.1 cm/s. 1) Calculate A. 2) Calculate δ.
Consider the ground state of the harmonic oscillator. (a) (7 pts) Calculate the expectation values <x>,...
Consider the ground state of the harmonic oscillator. (a) (7 pts) Calculate the expectation values <x>, <x2>, <p> and <p2>. (b) (3 ps) What is the product ΔxΔp, where the two quantities are standard deviations? (This is easy if you did part (a)). How does this answer compare with the prediction of the Uncertainty Principle?
Python: We want to find the position, as a function of time, of a damped harmonic...
Python: We want to find the position, as a function of time, of a damped harmonic oscillator. The equation of motion is              m d2x/dt2 = -kx – b dx/dt,      x(0) = 0.5, dx/dt (0) = 0 Take m = 0.25 kg, k = 100 N/m, and b = 0.1 N.s/m. Solve x(t) for t in the interval [0, 10T], where T = 2π/ω, and ω2 = k/m. please write the code. Divide the interval into N = 104 intervals:...
In Classical Physics, the typical simple harmonic oscillator is a mass attached to a spring. The...
In Classical Physics, the typical simple harmonic oscillator is a mass attached to a spring. The natural frequency of vibration (radians per second) for a simple harmonic oscillator is given by ω=√k/m and it can vibrate with ANY possible energy whatsoever. Consider a mass of 135 grams attached to a spring with a spring constant of k = 1 N/m. What is the Natural Frequency (in rad/s) of vibration for this oscillator? In Quantum Mechanics, the energy levels of a...
A harmonic oscillator with mass m and force constant k is in an excited state that...
A harmonic oscillator with mass m and force constant k is in an excited state that has quantum number n. 1) Let pmax=mvmaxx, where vmax is the maximum speed calculated in the Newtonian analysis of the oscillator. Derive an expression for pmax in terms of n, ℏ, k, and m. Express your answer in terms of the variables n, k, m, and the constant ℏ 2) Derive an expression for the classical amplitude A in terms of n, ℏ, k,...
A wave on a string has a wave function given by: y (x, t) = (0.300m)...
A wave on a string has a wave function given by: y (x, t) = (0.300m) sin [(4.35 m^-1 ) x + (1.63 s^-1 ) t] where t is expressed in seconds and x in meters. Determine: (10 points) a) the amplitude of the wave b) the frequency of the wave c) wavelength of the wave d) the speed of the wave
Given x(n) = {-1, 0, 2, 3}; where x(n=0) = -1                                   &nbsp
Given x(n) = {-1, 0, 2, 3}; where x(n=0) = -1                                                                  ­ a) compute its Discrete Time Fourier Transform X(ejw) b) sample X(ejw) at kw1 = 2?k/4, k = 0,1,2,3 and show that is equal to X~(k) which is the Discrete Fourier Series (DFS) of x~(n)
A wave in a string has a wave function given by: y (x, t) = (0.0200m)...
A wave in a string has a wave function given by: y (x, t) = (0.0200m) sin [(6.35 m) x + (2.63 s) t] where t is expressed in seconds and x in meters. Determine: a) the amplitude of the wave b) the frequency of the wave c) distance of wave of the wave d) the speed of the wave