Question

Consider a photon gas that is a Bose gas at temperature T inside a container of...

Consider a photon gas that is a Bose gas at temperature T inside a container of volume V. Calculate the Helmholtz free energy F. Derive the equation of state and compare it to that of the classical ideal gas. Compute the energy of the photon gas in terms of PV.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider a mole of an ideal monatomic gas, Xe, inside a container with rigid walls. The...
Consider a mole of an ideal monatomic gas, Xe, inside a container with rigid walls. The ideal gas is heated up as a flame is applied to the container’s exterior. The molar mass of Xe is 0.131 kg. The gas does not transfer any heat to the container. Answer the following questions. A.) Before the flame is lit, the pressure of the gas inside the container is 10.1x10^5 Pa and the temperature of the gas is 295 K. If at...
Consider the Ideal Gas Law, which states that PV = nRT, where P is the pressure,...
Consider the Ideal Gas Law, which states that PV = nRT, where P is the pressure, V is the volume, T is the temperature, and n is the number of moles of a gas sample, and R is a constant. (a) Assume a sample of 1 mole of a gas is in a expandable container where temperature and pressure are allowed to vary. Solve this equation for V = f(P,T). (b) Determine ∂V/dP and interpret the result. In particular, describe...
Consider a free fermion gas of N particles in a volume V at zero temperature. The...
Consider a free fermion gas of N particles in a volume V at zero temperature. The total kinetic energy of the gas is U = (3/5)N epsilon-F with epsilon-F = (hbar^2/2m)((3(π^2)N)/V )^ 2/3 . (a) Using the thermodynamic identity show that the pressure of the gas is given by p = − (∂U/∂V )σ,N . (b) Derive an expression of the degenerated-gas pressure and express your final result in terms of U and V .
Photons are massless light particles and they do not interact with each other. Consider a gas...
Photons are massless light particles and they do not interact with each other. Consider a gas of N photons in volume V at temperature T. The energy e of a photon is related to its momentum p by the equation e = cp, where c is the speed of light. Find the pressure P and the internal energy E of the photon gas in terms of N, V, T, and k. ' Hint: ? = −??????, where the partition function...
As will be discussed in detail in Chapter 5, the ideal-gas equation of state relates absolute...
As will be discussed in detail in Chapter 5, the ideal-gas equation of state relates absolute pressure, P(atm); gas volume, V(liters); number of moles of gas, n mol ; and absolute temperature, T(K): PV 0:08206nT (a) Convert the equation to one relating P psig , V (ft3) , n (lb-mole) , and T (°F) . (b) A 30.0 mole%CO and 70.0 mole%N2 gas mixture is stored in a cylinder with a volume of 3.5ft^3 at a temperature of 85°F. The...
2. Free Electron Gas a. Consider a free electron gas of valence 4s-electrons in potassium (atomic...
2. Free Electron Gas a. Consider a free electron gas of valence 4s-electrons in potassium (atomic mass M=39.1 and density 856 kg/m3). What is the energy (in electron volts, eV) of the highest filled level in the ground state (i.e., the Fermi energy at zero temperature)? b. Calculate the corresponding electron velocities. c. Calculate the density of states at the Fermi energy. How large is the number of electrons in so- called “soft zone” or “Fermi window” of about 4kBT...
. A container has n = 3 moles of a monoatomic ideal gas at a temperature...
. A container has n = 3 moles of a monoatomic ideal gas at a temperature of 330 K and an initial pressure of three times the atmospheric pressure. The gas is taken through the following thermodynamic cycle: 1.- The gas is expanded isobarically (constant pressure) to Vf = 2.5∙Vi. 2.- The pressure of the gas is decreased isochorically (constant volume) to half of the initial value. 3.- The gas is compressed isobarically back to its initial volume. 4.- The...
2.1 de Broglie wavelengths of particles, “quantum” behavior in a gas Consider a gas of atoms,...
2.1 de Broglie wavelengths of particles, “quantum” behavior in a gas Consider a gas of atoms, each of mass m, confined in a container at a temperature T. Assume that the density of atoms in this gas is ρ. Using the law of equipartition of energy, derive an expression for the rms velocity v in terms of the temperature. Use this result to calculate the average de Broglie wavelength λ of atoms in this gas. At what temperature TQ does...
Constant amount of ideal gas is kept inside a cylinder by a piston. Then the gas...
Constant amount of ideal gas is kept inside a cylinder by a piston. Then the gas expands isobarically. Compare the initial (i) and the final (f) physical quantities of the gas to each other. The internal energy Uf is ... Ui. The temperature Tf is ... Ti. The volume Vf is ... Vi. The entropy Sf is ... Si. The pressure pf is ... pi.
Constant amount of ideal gas is kept inside a cylinder by a piston. Then the gas...
Constant amount of ideal gas is kept inside a cylinder by a piston. Then the gas expands adiabatically. Compare the initial (i) and the final (f) physical quantities of the gas to each other. The pressure pf is ... pi. The temperature Tf is ... Ti. The internal energy Uf is ... Ui. The entropy Sf is ... Si. The volume Vf is ... Vi.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT