Question

Imagine two carts with different masses colliding (m1 = 1.0 kg, m2 = 2.0 kg). If...

Imagine two carts with different masses colliding (m1 = 1.0 kg, m2 = 2.0 kg). If cart one is initially moving at 10 m/s and the other cart is moving at -5.0 m/s, calculate the final speed of each mass after they have a 100% inelastic collision. Please show all work!

Homework Answers

Answer #1

After 100 percent inelastic collision, the two colliding masses combine with each other and move as a single object (mass of this single object being the sum of the two colliding masses).
And so, by using the conservation of momentum, the total momentum before the collision is equal to the total momentum after the collision. And so, we get


This is the velocity of the combined object after the collision. And putting the given values,

we get the final velocity

  
So, the final velocity of the combined mass is zero.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Imagine two carts of equal mass (m = 1.0 kg) collide. If cart one is initially...
Imagine two carts of equal mass (m = 1.0 kg) collide. If cart one is initially moving at 10 m/s and the other cart is stationary, calculate the final speed of each mass after they have a 100% elastic collision. Please show all work!
Two air carts of mass m1 = 0.83 kg and m2 = 0.45 kg are placed...
Two air carts of mass m1 = 0.83 kg and m2 = 0.45 kg are placed on a frictionless track. Cart 1 is at rest initially, and has a spring bumper with a force constant of 690 N/m. Cart 2 has a flat metal surface for a bumper, and moves toward the bumper of the stationary cart with an initial speed v= 0.66 m/s . Assume that positive x-axis is directed toward the direction of motion of cart 2. a)What...
Question 1: part a) Cart 1, having mass m1 = 3.0-kg, moving to the right with...
Question 1: part a) Cart 1, having mass m1 = 3.0-kg, moving to the right with a speed of 1.0 m/s has a head-on collision with cart 2 of mass m2 = 3.0-kg that is initially moving to the left with a speed of 1.0 m/s. After the collision, the cart 1 is moving to the left with a speed of 1.0 m/s. What is the final velocity of cart 2? part b) An object's velocity of +4.10 m/s changes...
A) A block of mass m1=6.0 kg is initially moving at 5.0 m/s to the right...
A) A block of mass m1=6.0 kg is initially moving at 5.0 m/s to the right and collides inelastically with an initially stationary block of mass m2=18.0 kg. The two objects become stuck together. Find the final velocity of the two blocks. B) A block of mass m1=6.0 kg is initially moving at 5.0 m/s to the right and collides elastically with an initially stationary block of mass m2=18.0 kg. After the collision, block m2 is moving to the right...
Two carts are rolling to the right along the same level track. Cart 1 (m1 =...
Two carts are rolling to the right along the same level track. Cart 1 (m1 = 3.81 kg) is in the rear, rolling at a speed of 6.25 m/s and catching up to cart 2, rolling at 3.07 m/s. Round final results to 3 digits. a) Cart 1 of course overtakes and collides with cart 2. Velcro pads on the carts make them stick together during the collision, after which they both continue rolling right, but at a speed of...
2 air carts collide and stick together. cart one is M1 = 0.755 kg and initial...
2 air carts collide and stick together. cart one is M1 = 0.755 kg and initial speed of 0.435 m/s the cart to right is initially at rest with mass m2= 0.300kg. a.find the velocity of the center of mass before the carts Collide and stick together b. find the velocity of the center of mass after the carts Collide and stick together c. find the kinetic energy of the system before and after the Collision
Consider an inelastic collision between two spheres of different masses, m1= 1kg and m2=3 kg, in...
Consider an inelastic collision between two spheres of different masses, m1= 1kg and m2=3 kg, in the +x direction. Ball M1 is moving at speed, v1=3.0ms, and ball 2 is moving towards ball 1 at speed, v2=1 kg. 1. What will happen to the velocities of the two balls after a completely inelastic collision? Explain your reasoning. Do NOT do any calculation yet. Use your physical intuition and what know so far about collisions. 2. Which physical principles were used...
Consider a collision between two carts, one of mass mA= 5 kg and the otherof mass...
Consider a collision between two carts, one of mass mA= 5 kg and the otherof mass mB= 7 kg, on a frictionless track. (A). Find the final velocity of Cart A, if both objects are initially moving in opposite directions toward each other at 12 m/s, and Cart B completely stops due to the collision. (B). Is this an elastic or inelastic collision? Why?
carts of masses m1 = 100 g and m2 = 900 g are on a horizontal,...
carts of masses m1 = 100 g and m2 = 900 g are on a horizontal, smooth track. The first car is moving at v = 16 m/s toward the second car which is at rest. (a) Find the velocity of the cars after collision if the stick together. (b) What fraction of the initial kinetic energy was lost in the collision? (c) Find the velocity of the cars after collision if the collision is elastic. (d) What fraction of...
A cart of mass m1 = 8.8 kg, moving on frictionless surface with a speed of...
A cart of mass m1 = 8.8 kg, moving on frictionless surface with a speed of 2.5 m/s makes an elastic collision with a cart of unknown mass m2 moving at an unknown speed toward m1 . After the collision, the 8.8 kg cart recoils with a speed of 9.2 m/s as shown in the figure but now m2 is at rest. Find the mass of m2.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT