Question

A particle of mass m1 = 1.32 kg with an initial velocity v1 = 4.56 m/s...

A particle of mass m1 = 1.32 kg with an initial velocity v1 = 4.56 m/s has a completely inelastic collision with a second particle of mass m2 = 3.68 kg with an initial velocity v2 = 3.06 m/s. What is the velocity of the combined particles immediately after the collision? (Express your answer in vector form.)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A block of mass m1 = 1.20 kg moving at v1 = 1.20 m/s undergoes a...
A block of mass m1 = 1.20 kg moving at v1 = 1.20 m/s undergoes a completely inelastic collision with a stationary block of mass m2 = 0.500 kg . The blocks then move, stuck together, at speed v2. After a short time, the two-block system collides inelastically with a third block, of mass m3 = 2.60 kg , which is initially at rest. The three blocks then move, stuck together, with speed v3. Assume that the blocks slide without...
A particle m1 = 0.500 kg moving with a velocity of v1 = (3.60 m/s, 25.0°)...
A particle m1 = 0.500 kg moving with a velocity of v1 = (3.60 m/s, 25.0°) collides and sticks with another particle m2 = 1.50 kg moving with a velocity of v2 = (2.00 m/s, 180.0°). Find the final velocity of the system after the collision. Find the ij vector and the magnitude and direction using the vector components method. Then use the graphical method to scale to find the magnitude and direction. The two methods should compare within a...
A man of mass m1 = 64.5 kg is skating at v1 = 7.60 m/s behind...
A man of mass m1 = 64.5 kg is skating at v1 = 7.60 m/s behind his wife of mass m2 = 53.0 kg, who is skating at v2 = 3.80 m/s. Instead of passing her, he inadvertently collides with her. He grabs her around the waist, and they maintain their balance. (a) Sketch the problem with before-and-after diagrams, representing the skaters as blocks. (b) Is the collision best described as elastic, inelastic, or perfectly inelastic? elastic inelastic perfectly inelastic...
The figure below shows a mass m1=5.2 kg moving with velocity v1=47.6 m/s which collides with...
The figure below shows a mass m1=5.2 kg moving with velocity v1=47.6 m/s which collides with a mass m2=3.8 kg which is initially at rest. The collision is completely inelastic and the masses slide up a frictionless hill of mass of height h=11.1 m. What is the kinetic energy K of the masses when they reach the top of the hill. K=727 J K=3879 J K=2425 J K=2061 J K=1576 J
The figure below shows a mass m1=5.1 kg moving with velocity v1=41.6 m/s which collides with...
The figure below shows a mass m1=5.1 kg moving with velocity v1=41.6 m/s which collides with a mass m2=2.6 kg which is initially at rest. The collision is completely inelastic and the masses slide up a frictionless hill of mass of height h=9.8 m. What is the kinetic energy K of the masses when they reach the top of the hill. K=655 J K=3493 J K=1419 J K=2183 J K=1856 J
A glider of mass m1 = 8 kg has a velocity v1i = +2 m/s before...
A glider of mass m1 = 8 kg has a velocity v1i = +2 m/s before colliding with a second glider of mass m2 = 4 kg, moving with velocity v2i = -4 m/s. After the collision the first glider has a velocity of v1f = -1 m/s. This collision is Elastic Partially inelastic Totally inelastic Impossible A glider of mass m1 = 8 kg has a velocity v1i = +2 m/s before colliding with a second glider of mass...
Consider object-1 of mass m1=652gram moving on the +X axis with the velocity of v1=13.5 m/s....
Consider object-1 of mass m1=652gram moving on the +X axis with the velocity of v1=13.5 m/s. Object-1 collide with stationary object-2 of mass m2=846gram on the X-axis. After collision, both objects are moving X-axis. a) Consider the collision is inelastic, and two objects combined into one object after the collision. Find the velocity of the combined object after collision? Consider the collision remains about 1.82ms. find the impulse acts on object-1 during the collision . Find the energy lost due...
   A ball of mass m1=0.250 kg and velocity v1=5.00 m/s [E] collides head-on with a...
   A ball of mass m1=0.250 kg and velocity v1=5.00 m/s [E] collides head-on with a ball of mass m2=0.800 kg that is initially at rest. No external forces act on the balls. a. Show what is conserved through the appropriate formula if the collision is elastic. b. What are the velocities of the balls after the collision?
1. A mass ma=2m, with an initial velocity of 4 m/s, and a mass mb=m, initially...
1. A mass ma=2m, with an initial velocity of 4 m/s, and a mass mb=m, initially at rest, undergo an elastic collision. Calculate their final velocities after the collision. 2. A mass ma=2m, with an initial velocity of 4 m/s, and a mass mb=m, initially at rest, undergo a perfectly inelastic collision. Calculate the final velocity after the collision and the kinetic-energy loss. 3. A moving mass,m1, collides perfectly inelastically with a stationary mass,m2. Show that the total kinetic energy...
There is object-1 of mass m1=2.84kg moving on +x axis with the velocity of v1=9.62m/s. Object-1...
There is object-1 of mass m1=2.84kg moving on +x axis with the velocity of v1=9.62m/s. Object-1 is explode into two segments of masses m2=1.74 kg and m3=1.10kg. Mass m2 moves in +250 with the velocity of 3.57m/s. a) Find the x and y-components of velocity of mass m3 after collision? (4 points) b) Find the velocity component of x-direction of the center of mass of the two-particle system after collision. Find the velocity component of y-direction of the center of...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT