Question

A 1700 kg car starts from rest and drives around a flat 70-m-diameter circular track. The...

A 1700 kg car starts from rest and drives around a flat 70-m-diameter circular track. The forward force provided by the car's drive wheels is a constant 1300 N.

Express your answers to two significant figures and include the appropriate units.

a) What is the magnitude of the car's acceleration at t=10s?

b) What is the direction of the car's acceleration at t=10s? Give the direction as an angle from the r-axis.

c) If the car has rubber tires and the track is concrete, at what time does the car begin to slide out of the circle?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A car starts from rest and drives around a circular track with a radius of 45.0...
A car starts from rest and drives around a circular track with a radius of 45.0 m at constant tangential acceleration. If the car takes 27.0 s in its first lap around the track, (a) what is the magnitude of its overall acceleration at the end of that lap? (b) What angle does the acceleration vector make with a radius line?
An automobile moves on a circular track of radius 1.04 km. It starts from rest from...
An automobile moves on a circular track of radius 1.04 km. It starts from rest from the point (x, y) = (1.04 km, 0 km) and moves counterclockwise with a steady tangential acceleration such that it returns to the starting point with a speed of 29.2 m/s after one lap. (The origin of the Cartesian coordinate system is at the center of the circular track.) What are the car's position and velocity vectors when it is one-sixth of the way...
A car starts from rest and speeds up at a constant rate of 2.84 m/s2 as...
A car starts from rest and speeds up at a constant rate of 2.84 m/s2 as it moves around a circular track. Find the magnitude of the car's acceleration (in m/s2) at the instant when it completes the first revolution. Answer should be in 3 significant figure
A 210 g toy car is placed on a narrow 70-cm-diameter track with wheel grooves that...
A 210 g toy car is placed on a narrow 70-cm-diameter track with wheel grooves that keep the car going in a circle. The 1.1 kg track is free to turn on a frictionless, vertical axis. The spokes have negligible mass. After the car's switch is turned on, it soon reaches a steady speed of 0.71 m/s relative to the track What then is the track's angular velocity, in rpm? Express your answer to two significant figures and include the...
The wheels on a car have a radius of 0.250 m. The car starts from rest...
The wheels on a car have a radius of 0.250 m. The car starts from rest and the driver accelerates the car at a constant rate and reaches a speed of 47.0 miles per hour in 7.0 s. a) Calculate the angular acceleration of the wheels of the car. b) The driver applies the brakes for 5.0 s which decelerates the car at a rate of 15.0 rad/s2. Calculate the total distance the car traveled during the entire 12.0 s...
A radio controlled model car with mass m=2.98 kg starts a race initially from rest at...
A radio controlled model car with mass m=2.98 kg starts a race initially from rest at t=0 and accelerates with constant acceleration to a speed of 14.4 m/s in a time of t=10.0 s. What is the average power do the car's batteries have to deliver during the acceleration, and what is the instantaneous power at the end of the time interval? Select one answer for average power (P-ave) and one for the instantaneous power at t=10.0 s (P-final). P-ave=31...