Question

A system of mass 10 kg undergoes a process during which there is no work, the...

A system of mass 10 kg undergoes a process during which there is no work, the elevation decreases by 50 m, and the velocity increases from 15 m/s to 50 m/s. The specific internal energy decreases by 5 kJ/kg and the acceleration of gravity is constant at 9.8 m/s2. Determine the change in kinetic energy, in kJ, and the amount of energy transfer by heat for the process, in kJ.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A mass of one kg of water within a piston–cylinder assembly undergoes a constant-pressure process from...
A mass of one kg of water within a piston–cylinder assembly undergoes a constant-pressure process from saturated vapor at 500 kPa to a temperature of 260°C. Kinetic and potential energy effects are negligible. For the water: a) Evaluate the work, in kJ, b) If the work is 30 kJ, evaluate the heat transfer, in kJ, c) If the heat transfer is negligible, evaluate the entropy production in kJ/K d) Determine if the process is reversible, irreversible, or impossible.
A gas undergoes a process in a piston–cylinder assembly during which the pressure-specific volume relation is...
A gas undergoes a process in a piston–cylinder assembly during which the pressure-specific volume relation is pv1.2 = constant. The mass of the gas is 0.4 lb and the following data are known: p1 = 160 lbf/in.2, V1 = 1 ft3, and p2 = 300 lbf/in.2 During the process, heat transfer from the gas is 2.1 Btu. Kinetic and potential energy effects are negligible. Determine the change in specific internal energy of the gas, in Btu/lb. Δu⁢=
Atmospheric pressure is 100 kPa in a system of cylinders and pistons.The mass of the piston...
Atmospheric pressure is 100 kPa in a system of cylinders and pistons.The mass of the piston is 4 kg and the area of ​​the piston is 4.0 cm2. The following process takes place by external heat transfer. (Gravity acceleration is 10 m / s2). 1. Calculate the pressure inside the cylinder in kPa. 2. The cylinder contains 0.1 kg of water vapor, and the temperature of the water vapor is 150oC. Find the volume and internal energy of water vapor...
A piston-cylinder assembly containing 3 kg of an ideal gas undergoes a constant pressure process from...
A piston-cylinder assembly containing 3 kg of an ideal gas undergoes a constant pressure process from an initial volume of 48 m3 to a final volume of 30 m3 . During the process, the piston supplies 1.2 MJ of work to the gas. The gas has a constant specific heat at constant volume of 1.80 kJ/(kg∙K) and a specific gas constant of 1.48 kJ/(kg∙K). Neglect potential and kinetic energy changes. a. Determine the initial specific volume of the gas in...
An Engineering Thermodynic-Heat Transfer Quistion: A projectile of mass 0.1 kg is moving with a velocity...
An Engineering Thermodynic-Heat Transfer Quistion: A projectile of mass 0.1 kg is moving with a velocity of 250 m/s. If the stored energy (E) in the solid is 1.5625 kJ, (a) determine the specific internal energy (u). Neglect potential energy and assume the solid to be uniform.
Water undergoes a constant‐volume process within a piston–cylinder assembly from saturated liquid at 4 bar to...
Water undergoes a constant‐volume process within a piston–cylinder assembly from saturated liquid at 4 bar to a final pressure of 50 bar. Kinetic and potential energy effects are negligible. Determine the work and the heat transfer, each in kJ per kg of water. [7 points]
A thermodynamics system undergoes a process of internal energy increases by 200J. During this time of...
A thermodynamics system undergoes a process of internal energy increases by 200J. During this time of interval, 75J of heat is transferred from the system. How much energy in the form of work is transferred?
An object with a mass of 4.15 kg undergoes an acceleration of -3.1 m/s2 for a...
An object with a mass of 4.15 kg undergoes an acceleration of -3.1 m/s2 for a period of 8.0 s. It then undergoes an acceleration of 5.2 m/s2 for a period of 11.0 s If the initial velocity of the object is 2.36 m/s and it first experiences the acceleration when it is at the origin, plot by hand on graph paper (to scale) the force, velocity, and position as functions of time. Explain why your graphs look the way...
Determine the gravitational potential energy, in kJ, of 3 m3 of liquid water at an elevation...
Determine the gravitational potential energy, in kJ, of 3 m3 of liquid water at an elevation of 30 m above the surface of Earth. The acceleration of gravity is constant at 9.7 m/s2 and the density of the water is uniform at 1000 kg/m3. Determine the change in gravitational potential energy if the elevation decreases by 15 m. A. Determine the gravitational potential energy, in kJ, of 3 m3 of liquid water at an elevation of 30 m above the...
A system consisting of 2 kg of water initially at 130°C, 10 bar undergoes an internally...
A system consisting of 2 kg of water initially at 130°C, 10 bar undergoes an internally reversible, isothermal expansion during which there is energy transfer by heat into the system of 700 kJ. Determine the final pressure, in bar, and the work by the system, in kJ.