Question

A system of mass 10 kg undergoes a process during which there is no work, the...

A system of mass 10 kg undergoes a process during which there is no work, the elevation decreases by 50 m, and the velocity increases from 15 m/s to 50 m/s. The specific internal energy decreases by 5 kJ/kg and the acceleration of gravity is constant at 9.8 m/s2. Determine the change in kinetic energy, in kJ, and the amount of energy transfer by heat for the process, in kJ.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A mass of one kg of water within a piston–cylinder assembly undergoes a constant-pressure process from...
A mass of one kg of water within a piston–cylinder assembly undergoes a constant-pressure process from saturated vapor at 500 kPa to a temperature of 260°C. Kinetic and potential energy effects are negligible. For the water: a) Evaluate the work, in kJ, b) If the work is 30 kJ, evaluate the heat transfer, in kJ, c) If the heat transfer is negligible, evaluate the entropy production in kJ/K d) Determine if the process is reversible, irreversible, or impossible.
A gas undergoes a process in a piston–cylinder assembly during which the pressure-specific volume relation is...
A gas undergoes a process in a piston–cylinder assembly during which the pressure-specific volume relation is pv1.2 = constant. The mass of the gas is 0.4 lb and the following data are known: p1 = 160 lbf/in.2, V1 = 1 ft3, and p2 = 300 lbf/in.2 During the process, heat transfer from the gas is 2.1 Btu. Kinetic and potential energy effects are negligible. Determine the change in specific internal energy of the gas, in Btu/lb. Δu⁢=
Atmospheric pressure is 100 kPa in a system of cylinders and pistons.The mass of the piston...
Atmospheric pressure is 100 kPa in a system of cylinders and pistons.The mass of the piston is 4 kg and the area of ​​the piston is 4.0 cm2. The following process takes place by external heat transfer. (Gravity acceleration is 10 m / s2). 1. Calculate the pressure inside the cylinder in kPa. 2. The cylinder contains 0.1 kg of water vapor, and the temperature of the water vapor is 150oC. Find the volume and internal energy of water vapor...
A piston-cylinder assembly containing 3 kg of an ideal gas undergoes a constant pressure process from...
A piston-cylinder assembly containing 3 kg of an ideal gas undergoes a constant pressure process from an initial volume of 48 m3 to a final volume of 30 m3 . During the process, the piston supplies 1.2 MJ of work to the gas. The gas has a constant specific heat at constant volume of 1.80 kJ/(kg∙K) and a specific gas constant of 1.48 kJ/(kg∙K). Neglect potential and kinetic energy changes. a. Determine the initial specific volume of the gas in...
An Engineering Thermodynic-Heat Transfer Quistion: A projectile of mass 0.1 kg is moving with a velocity...
An Engineering Thermodynic-Heat Transfer Quistion: A projectile of mass 0.1 kg is moving with a velocity of 250 m/s. If the stored energy (E) in the solid is 1.5625 kJ, (a) determine the specific internal energy (u). Neglect potential energy and assume the solid to be uniform.
Determine the gravitational potential energy, in kJ, of 3 m3 of liquid water at an elevation...
Determine the gravitational potential energy, in kJ, of 3 m3 of liquid water at an elevation of 30 m above the surface of Earth. The acceleration of gravity is constant at 9.7 m/s2 and the density of the water is uniform at 1000 kg/m3. Determine the change in gravitational potential energy if the elevation decreases by 15 m. A. Determine the gravitational potential energy, in kJ, of 3 m3 of liquid water at an elevation of 30 m above the...
1-kg of R-134a initially at 600 kPa and 25 °C undergoes a process during which the...
1-kg of R-134a initially at 600 kPa and 25 °C undergoes a process during which the entropy is kept constant until the pressure drops to 100 kPa. Determine the final temperature of the R-134a and the final specific internal energy.
A 2.0 kg mass is attached to a spring which is hooked to a wall. The...
A 2.0 kg mass is attached to a spring which is hooked to a wall. The mass undergoes horizontal oscillations between 25 to 65 cm from the wall. The spring constant is 32 N/m. The spring is compressed and then released so it is at maximum displacement when .  Hint: Use the information to write equations for the x-position, x-velocity and x-acceleration as a function of time first and then evaluate at the time given. a. What is the x position...
A 2.0 kg mass is attached to a spring which is hooked to a wall. The...
A 2.0 kg mass is attached to a spring which is hooked to a wall. The mass undergoes horizontal oscillations between 25 to 65 cm from the wall. The spring constant is 32 N/m. The spring is compressed and then released so it is at maximum displacement when .  Hint: Use the information to write equations for the x-position, x-velocity and x-acceleration as a function of time first and then evaluate at the time given. a. What is the x position...
Oil enters a counterflow heat exchanger at 600 K with a mass flow rate of 10...
Oil enters a counterflow heat exchanger at 600 K with a mass flow rate of 10 kg/s and exits at 350 K. A separate stream of liquid water enters at 20°C, 5 bar. Each stream experiences no significant change in pressure. Stray heat transfer with the surroundings of the heat exchanger and kinetic and potential energy effects can be ignored. The specific heat of the oil is constant, c = 2 kJ/kg · K. If the designer wants to ensure...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT