Question

A solid, uniform sphere of mass 2.0 kg and radius 1.7m rolls without slipping down an inclined plane of height 7.0m . What is the angular velocity of the sphere at the bottom of the inclined plane? a) 5.8 rad/s b) 11.0 rad/s c) 7.0 rad/s d) 9.9 rad/s

Answer #1

1. A solid sphere of mass 50 kg rolls without slipping. If the
center-of-mass of the sphere has a translational speed of 4.0 m/s,
the total kinetic energy of the sphere is
2.
A solid sphere (I = 0.4MR2) of
radius 0.0600 m and mass 0.500 kg rolls without slipping down an
inclined plane of height 1.60 m . At the bottom of the plane, the
linear velocity of the center of mass of the sphere is
approximately
_______ m/s.

A uniform disc of mass M=2.0 kg and radius R=0.45 m rolls
without slipping down an inclined plane of length L=40 m and slope
of 30°. The disk starts from rest at the top of the incline. Find
the angular velocity at the bottom of the incline.

A 350-N sphere 0.20 m in radius rolls without slipping 6.0 m
down a ramp that is inclined at 25° with the horizontal. What is
the angular speed of the sphere at the bottom of the slope if it
starts from rest? rad/s

A 340-N sphere 0.20 m in radius rolls without slipping 6.0 m
down a ramp that is inclined at 34° with the horizontal. What is
the angular speed of the sphere at the bottom of the slope if it
starts from rest?
in rad/s

A uniform, solid sphere of radius 3.00 cm and mass 2.00 kg
starts with a purely translational speed of 1.25 m/s at the top of
an inclined plane. The surface of the incline is 1.00 m long, and
is tilted at an angle of 25.0 ∘ with respect to the horizontal.
Assuming the sphere rolls without slipping down the incline,
calculate the sphere's final translational speed v 2 at the bottom
of the ramp.

A uniform, solid sphere of radius 5.75 cm 5.75 cm and mass 3.25
kg 3.25 kg starts with a purely translational speed of 1.25 m/s
1.25 m/s at the top of an inclined plane. The surface of the
incline is 2.25 m 2.25 m long, and is tilted at an angle of 29.0 ∘
29.0∘ with respect to the horizontal. Assuming the sphere rolls
without slipping down the incline, calculate the sphere's final
translational speed ? 2 v2 at the...

3) A solid cylinder with mass 4kg and radius r=0.5 m rolls
without slipping from a height of 10 meters on an inclined plane
with length 20 meters. a) Find the friction force so that it rolls
without slipping b) Calculate the minimum coefficient of rolling
friction mu c) Calculate its speed as it arrives at the bottom of
the inclined plane

A 320-N sphere 0.20 m in radius rolls without slipping 6.0 m
down a ramp that is inclined at 34° with the horizontal. What is
the angular speed of the sphere at the bottom of the slope if it
starts from rest?

A solid sphere ( of mass 2.50 kg and radius 10.0 cm) starts
rolling without slipping on an inclined plane (angle of inclination
30 deg). Find the speed of its center of mass when it has traveled
down 2.00 m along with the inclination.
Groups of choices:
a. 3.13 m/s
b. 4.43 m/s
c. 3.74 m/s
d. 6.26 m/s

A hollow sphere of radius 16cm and mass 10kg stars from rest and
rolls without slipping a distance d=6.5m down a roof that is
inclined at an angle of 36°.
a. What is the angular speed of the hollow sphere about its
center as it leaves the roof?
b. The roof’s edge is at a height of 4.5m. How far horizontally
from the roof’s edge does the hollow sphere hit the level
ground?

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 4 minutes ago

asked 13 minutes ago

asked 15 minutes ago

asked 16 minutes ago

asked 17 minutes ago

asked 28 minutes ago

asked 38 minutes ago

asked 52 minutes ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago