Question

a. Consider two infinite sheets parallel to the xy plane, separated by distance d, carrying charge...

a. Consider two infinite sheets parallel to the xy plane, separated by distance d, carrying charge densities +? and -?. Solve for and sketch the potential as a function of z.

b. Consider two disks of radius R parallel to the xy plane, centered on the z axis and separated by distance d, carrying charge densities +? and -?. (In a real capacitor, the charge density will not be strictly uniform, but we will continue to ignore that for the purposes of this problem.) Solve for and sketch the potential as a function of z along the axis of symmetry.

c. Compare the electric force on the charges in the top plate toward the bottom plate and away from the bottom plate. That is, compute the ratio of these magnitudes.

d. Suppose you connect the two plates of a charged capacitor by a conducting wire. Why does charge flow through the wire?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider two infinite plates, both parallel to the xy plane of a coordinate system. The top...
Consider two infinite plates, both parallel to the xy plane of a coordinate system. The top plate is at the height z = +5cm and carries a uniform charge distribution of ?= +3nC/m2. The bottom plate is at height z = - 5cm and carries a uniform charge distribution of ?= -3nC/m2. The space between the plates is filled with air. Between the plates runs a long wire along the y-axis (at z=0 and x=0), carrying a current of 10A....
In the figure, five long parallel wires in the xy plane are separated by distance d...
In the figure, five long parallel wires in the xy plane are separated by distance d = 6.30 cm, have lengths of 10.0 m, and carry identical currents of 3.52 A out of the page. Each wire experiences a magnetic force due to the other wires. What is the magnitude of the net magnetic force on (a) wire 1, (b) wire 2, (c) wire 3, (d) wire 4, (e) wire 5?
Two long, parallel, current-carrying wires lie in an xy-plane. The first wire lies on the line...
Two long, parallel, current-carrying wires lie in an xy-plane. The first wire lies on the line y = 0.310 m and carries a current of 25.5 A in the +x direction. The second wire lies along the x-axis. The wires exert attractive forces on each other, and the force per unit length on each wire is 300 µN/m. What is the y-value (in m) of the line in the xy-plane where the total magnetic field is zero?
An air-filled parallel-plate capacitor with capacitance C0 stores charge Q on plates separated by distance d....
An air-filled parallel-plate capacitor with capacitance C0 stores charge Q on plates separated by distance d. The potential difference across the plates is ΔV0 and the energy stored is PEC,0. If the capacitor is disconnected from its voltage source and the space between the plates is then filled with a dielectric of constant k = 2.00, evaluate the ratios (a) Cnew/C0, (b) ΔVnew/ ΔV0, and (c) PEC, new/PEC, 0.
An air-filled capacitor (with a capacitance C) consisting two parallel plates separated by a distance d...
An air-filled capacitor (with a capacitance C) consisting two parallel plates separated by a distance d is connected to a battery of voltage V has stored a charge Q. While it is still connected to the battery, the plate separation is adjusted to 2d. In terms of C, V and Q, find the new value of capacitance, voltage, charge and energy stored on the capacitor. Explain your answer. [5 marks]
Consider an infinite plane dielectric slab of thickness d sandwiched between two infinite plane sheets of...
Consider an infinite plane dielectric slab of thickness d sandwiched between two infinite plane sheets of equal and opposite uniform charge densities ρs and –ρs in the z = 0 and z = d planes, respectively. Answer the following: (a) In the absence of the dielectric, find the electric field between the sheets of charge. (b) Assuming a uniform polarization P in the dielectric, show that there is no polarization volume charge, and that the polarization surface charge is given...
Two infinitely long parallel wires have a uniform charge per unit length lambda and -lambda respectively....
Two infinitely long parallel wires have a uniform charge per unit length lambda and -lambda respectively. The wires are parallel with the z axis. The positively charged wire intersects the x axis at x = -a. and the negatively charged wire intersects the ,r axis at ,r = +a. (a) Choose the origin as the reference point where the potential is zero, and express the potential at an arbitrary point (x. y) in the xy plane in terms of .v,...
Two uniformly charged, infinite, nonconducting planes are parallel to a yz plane and positioned at x...
Two uniformly charged, infinite, nonconducting planes are parallel to a yz plane and positioned at x = -42 cm and x = +42 cm. The charge densities on the planes are -41 nC/m2 and +21 nC/m2, respectively. What is the magnitude of the potential difference between the origin and the point on the x axis at x = +84 cm? (Hint: Use Gauss' law for planar symmetry to determine the electric field in each region of space.)
Two uniformly charged, infinite, nonconducting planes are parallel to a yz plane and positioned at x...
Two uniformly charged, infinite, nonconducting planes are parallel to a yz plane and positioned at x = -44 cm and x = +44 cm. The charge densities on the planes are -55 nC/m2 and +17 nC/m2, respectively. What is the magnitude of the potential difference between the origin and the point on the x axis at x = +89 cm? (Hint: Use Gauss' law for planar symmetry to determine the electric field in each region of space.)
Two uniformly charged, infinite, nonconducting planes are parallel to a yz plane and positioned at x...
Two uniformly charged, infinite, nonconducting planes are parallel to a yz plane and positioned at x = -48 cm and x = +48 cm. The charge densities on the planes are -46 nC/m2 and +21 nC/m2, respectively. What is the magnitude of the potential difference between the origin and the point on the x axis at x = +87 cm? (Hint: Use Gauss' law for planar symmetry to determine the electric field in each region of space.)
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT