Question

I need to design a circuit using only resistors and capacitors that will filter out a...

I need to design a circuit using only resistors and capacitors that will filter out a signal above a specific frequency. In order to deemed a success, the peak voltage across your capacitor must be equal to 20% of the peak voltage provided by the function generator at the frequency ftheory.

Available values of resistance are 5, 10, 30, and 39

Available values of capacitance are 100, 150, 220 and 470 uF

ftheory=1699Hz

I need to draw the circuit and show the calculations.

Please help thank you.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Part 1: I need to design a circuit using only resistors and capacitors that will filter...
Part 1: I need to design a circuit using only resistors and capacitors that will filter out a signal above a specific frequency. In order to be deemed a success, the peak voltage across your capacitor must be equal to 20% of the peak voltage provided by the function generator at the frequency f_theory. Full credit on this lab requires that your percent error in Part 2 is less than 5%. f theory = 1699Hz Available values of resistance are...
To analyze and design a passive, second-order bandreject filter using a series RLC circuit. A bandreject...
To analyze and design a passive, second-order bandreject filter using a series RLC circuit. A bandreject filter is needed for an equalizer, a device that allows one to select the level of amplification of sounds within a specific frequency band while not affecting the sounds outside that band. The filter should pass frequencies lower than 1.4 kHz and have a resonant frequency of 3.8 kHz. A 5.0 μF capacitor and any needed resistors and inductors are available to be used...
I need full solution Design a circuit with the specifications bellow: 1. The circuit contains at...
I need full solution Design a circuit with the specifications bellow: 1. The circuit contains at least two of each components: DC Voltage source, DC Current source, 2. The circuit contains at least 8 Resistors 3. One of the voltage sources is connected between ground and a non-ground node 4. One of the voltage sources is connected between two non-ground nodes 5. Make sure you need to solve at least 3 equations and 3 unknowns. After you designed the circuit:...
Using 5 nF capacitors and ideal op amps, design a high-pass unitygain Butterworth filter with a...
Using 5 nF capacitors and ideal op amps, design a high-pass unitygain Butterworth filter with a cutoff frequency of 4 kHz and a gain of at least -32 dB at 800 Hz. 30 points a) Draw a circuit diagram of the filter and label all the component values.
Please show steps. Thank you Design an identical cascade unit gain active RC low pass filter...
Please show steps. Thank you Design an identical cascade unit gain active RC low pass filter of order 4. The cut frequency for the filter is 800Hz. Use 1.0uF capacitors. a) Draw the circuit and calculate the values of R. b) Express the transfer function of the filter H(s). c) Plot the Bode diagram of the frequency response of the filter. d) Estimate the output voltage if the filter is excited with an input voltage vi(t) = sin(15000t) e) What...
Design an active-RC low pass second order Butterworth filter for a cutoff frequency of 1 kHz,...
Design an active-RC low pass second order Butterworth filter for a cutoff frequency of 1 kHz, and a pass band gain of 2 V/V. Use a 741 Op Amp. If using Table I, use a capacitor value of 0.1 μF for C and C1, otherwise you may use any capacitors available in the lab. If applicable, make an excel worksheet showing the calculations required for the above design.  Choose appropriate real resistor values for the designed circuit and simulate this circuit...
Design, simulate, and implement a multistage discrete amplifier using small-signal BJT transistors. Amplifier Specifications: – Midband...
Design, simulate, and implement a multistage discrete amplifier using small-signal BJT transistors. Amplifier Specifications: – Midband voltage gain: Av = 100. – Lower 3-dB frequency: fc = 100 Hz. – Input Impedance: Zin ≥ 250 kΩ. – Output Impedance: Zo ≤ 100 Ω. – Power Supply: Vcc = 15 V. – The load resistance is 1 kΩ – Output capability with a 1–kHz sinusoidal test signal must be at least 2 V peak without severe distortion (i.e. clipping). – Transistor...
A common use of capacitors as a reactive component is in a low-pass or high-pass filter,...
A common use of capacitors as a reactive component is in a low-pass or high-pass filter, both of which contain a resistor and a capacitor. A low-pass filter is one that passes through signals with frequencies lower than a particular cutoff frequency and causes attenuation in signals of higher frequency. A high-pass filter is one that passes through signals with frequencies higher than a certain cutoff and causes lower frequencies to attenuate, giving the two configurations their names. The cutoff...
Q 4: Design a circuit with the specifications bellow: The circuit contains at least two of...
Q 4: Design a circuit with the specifications bellow: The circuit contains at least two of each components: DC Voltage source, DC Current source, The circuit contains at least 8 Resistors One of the voltage sources is connected between ground and a non-ground node One of the voltage sources is connected between two non-ground nodes Make sure you need to solve at least 3 equations and 3 unknowns. After you designed the circuit: I ) Solve this Circuit using Nodal...
A series RCL circuit contains only a capacitor (C = 12.2 μF), an inductor (L =...
A series RCL circuit contains only a capacitor (C = 12.2 μF), an inductor (L = 5.28 mH), and a generator (peak voltage = 68.5 V, frequency = 5.60 x 103 Hz). When t = 0 s, the instantaneous value of the voltage is zero, and it rises to a maximum one-quarter of a period later. (a) Find the instantaneous value of the voltage across the capacitor/inductor combination when t = 7.20 x 10-4 s. (b) What is the instantaneous...