Question

(a) A 350-g mass is oscillating on a horizontal spring with a frequency of 20 Hz....

(a) A 350-g mass is oscillating on a horizontal spring with a frequency of 20 Hz. What is the spring constant of the spring? (b) How much total energy does the mass-and-spring combination have if its amplitude is 2.0 cm? (c) If the mass were hung from a light string, what length would the string have to be so that the resulting pendulum would have a period ten times that of the mass-and-spring combination in part (a)?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 205 g mass attached to a horizontal spring oscillates at a frequency of 1.00 Hz...
A 205 g mass attached to a horizontal spring oscillates at a frequency of 1.00 Hz . At t =0s, the mass is at x= 4.20 cm and has vx =− 23.0 cm/s . Determine: (a) the period s (b) the angular frequency rad/s (c) the amplitude cm (d) the phase constant rad (e) the maximum speed cm/s (f) the maximum acceleration cm/s2 (g) the total energy J (h) the position at t = 4.2s
A 400 gram mass is attached to a horizontal spring with a frequency of 2 Hz....
A 400 gram mass is attached to a horizontal spring with a frequency of 2 Hz. The mass has a speed of 40 cm/s and is located at x=5 cm.. A) find the period of motion B) find the amplitude of motion C) find the maximum speed of the mass D) find the total energy of the mass
A 240 g mass attached to a horizontal spring oscillates at a frequency of 5.20 Hz...
A 240 g mass attached to a horizontal spring oscillates at a frequency of 5.20 Hz . At t =0s, the mass is at x= 6.80 cm and has vx =− 27.0 cm/s . Determine: The period. Enter your answer numerically to five significant figures. The angular frequency. Enter your answer numerically to five significant figures. The amplitude. Enter your answer numerically to five significant figures. The phase constant. Enter your answer numerically to four significant figures.
A 195 g mass attached to a horizontal spring oscillates at a frequency of 2.50 Hz...
A 195 g mass attached to a horizontal spring oscillates at a frequency of 2.50 Hz . At t =0s, the mass is at x= 6.00 cm and has vx =? 40.0 cm/s . Determine:? the phase constant, the maximum speed, the maximum acceleration and the total energy
A 245 g mass attached to a horizontal spring oscillates at a frequency of 1.30 Hz...
A 245 g mass attached to a horizontal spring oscillates at a frequency of 1.30 Hz . At t =0s the mass is at x= 4.20 cm and has vx=−=− 42.0 cm/s Determine the phase constant and max speed
A mass of 220 g oscillates on a horizontal frictionless surface at a frequency of 2.7...
A mass of 220 g oscillates on a horizontal frictionless surface at a frequency of 2.7 Hz and with amplitude of 4.6 cm . What is the effective spring constant for this motion? How much energy is involved in this motion?
A particle with mass 2.61 kg oscillates horizontally at the end of a horizontal spring. A...
A particle with mass 2.61 kg oscillates horizontally at the end of a horizontal spring. A student measures an amplitude of 0.923 m and a duration of 129 s for 65 cycles of oscillation. Find the frequency, ?, the speed at the equilibrium position, ?max, the spring constant, ?, the potential energy at an endpoint, ?max, the potential energy when the particle is located 68.5% of the amplitude away from the equiliibrium position, ?, and the kinetic energy, ?, and...
a.) A 100 g mass is oscillating on a spring with a spring constant of 3.0...
a.) A 100 g mass is oscillating on a spring with a spring constant of 3.0 N/m. The mass is initially at 15 cm from the equilibrium position with an initial speed of 80 cm/s. What is the oscillation amplitude? b.) A 200 g mass is oscillating on a spring with a spring constant of 4.0 N/m. The mass is initially at 15 cm from the equilibrium position with an initial speed of 50 cm/s. What is its maximum speed?
A mass of 100 g is attached to a spring and oscillating with simple harmonic motion....
A mass of 100 g is attached to a spring and oscillating with simple harmonic motion. The position of the mass at all times is given by x(t) = (2.0 cm) cos(2t), where t is in seconds, and the 2 is in rad/s. Determine the following: (a) The amplitude (in cm). cm (b) The frequency. Hz (c) The maximum speed in cm/s. Think about the expression you can write for v(t). Where is the maximum velocity in that expression? You...
A 200 g mass attached to a horizontal spring oscillates at a frequency of 2.0 Hz...
A 200 g mass attached to a horizontal spring oscillates at a frequency of 2.0 Hz . At one instant t=0s, the mass is at x=5.0cm and has V=−30cm/s. Determine the time that the mass passes through the equilibrium position for the first time.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT