Question

A particle is moving along a straight line, and its position is defined by s =...

A particle is moving along a straight line, and its position is defined by s = (t2 - 6t +6) m. At t=6 seconds, find the following : a. the acceleration of the particle b. The average speed c. the average velocity

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The function s(t) describes the position of a particle moving along a coordinate line, where s...
The function s(t) describes the position of a particle moving along a coordinate line, where s is in feet and t is in seconds. s(t) = 3t2 - 6t +3 A) Find the anti-derivative of the velocity function and acceleration function in order to determine the position function. To find the constant after integration use the fact that s(0)=1. B) Find when the particle is speeding up and slowing down. C) Find the total distance from time 0 to time...
A particle is moving along a straight line and has acceleration given by a(t) = 20t^3+12t^2}....
A particle is moving along a straight line and has acceleration given by a(t) = 20t^3+12t^2}. Its initial velocity is v( 0 ) = 4 m / s and its initial displacement is s( 0 ) = 5 m. Find the position of the particle at t = 1 seconds.
A particle is moving along a straight line and has acceleration given by a(t) = 20t^3+12t^2}....
A particle is moving along a straight line and has acceleration given by a(t) = 20t^3+12t^2}. Its initial velocity is: v(0) = 4 m/ and its initial displacement is s(0) = 5 ms. Find the position of the particle at t = 1 seconds. 10  m 5  m 11  m 4  m 2m
A particle moves in a straight line and its position is given by s(t)=t^3 - 6t^2-36t...
A particle moves in a straight line and its position is given by s(t)=t^3 - 6t^2-36t +66, where s is measured in feet and t in seconds. Find the intervals when the particle increases its speed.
The displacement (in centimeters) of a particle moving back and forth along a straight line is...
The displacement (in centimeters) of a particle moving back and forth along a straight line is given by the equation of motion s = 4 sin(πt) + 5 cos(πt), where t is measured in seconds. (Round your answers to two decimal places.) (a) Find the average velocity during each time period. (i)    [1, 2] cm/s (ii)    [1, 1.1] cm/s (iii)    [1, 1.01] m/s (iv)    [1, 1.001] (b) Estimate the instantaneous velocity of the particle when t = 1.
The position function of an object moving along a straight line is given by s =...
The position function of an object moving along a straight line is given by s = f(t). The average velocity of the object over the time interval [a, b] is the average rate of change of f over [a, b]; its (instantaneous) velocity at t = a is the rate of change of f at a. A ball is thrown straight up with an initial velocity of 144 ft/sec, so that its height (in feet) after t sec is given...
The position (in meters) of an object moving in a straight line s(t)=√ 3t+1 −2t^2+1 where...
The position (in meters) of an object moving in a straight line s(t)=√ 3t+1 −2t^2+1 where t is measured in seconds. (a) Find the average velocity on [0,1]. (b) Find the instantaneous velocity at t=1. (c) Find the acceleration at t=1.
The displacement (in centimeters) of a particle moving back and forth along a straight line is...
The displacement (in centimeters) of a particle moving back and forth along a straight line is given by the equation of motion s = 3 sin(πt) + 4 cos(πt), where t is measured in seconds. (Round your answers to two decimal places.) (a) Find the average velocity during each time period. (i)    [1, 2] cm/s (ii)    [1, 1.1] cm/s (iii)    [1, 1.01] cm/s (iv)    [1, 1.001] cm/s (b) Estimate the instantaneous velocity of the particle when t = 1. cm/s
A particle moves along the x axis. It is initially at the position 0.150 m, moving...
A particle moves along the x axis. It is initially at the position 0.150 m, moving with velocity 0.080 m/s and acceleration -0.340 m/s2. Suppose it moves with constant acceleration for 5.60 s. (a) Find the position of the particle after this time. (b) Find its velocity at the end of this time interval. Next, assume it moves with simple harmonic motion for 5.60 s and x = 0 is its equilibrium position. (Assume that the velocity and acceleration is...
If the velocity at time t for a particle moving along a straight line is proportional...
If the velocity at time t for a particle moving along a straight line is proportional to the square root of its position x, write a differential equation that fits this description