Question

The space between two concentric conducting spherical shells of radii b = 1.70 cm and a...

The space between two concentric conducting spherical shells of radii b = 1.70 cm and a = 1.00 cm is filled with a substance of dielectric constant κ = 15.1. A potential difference V = 65.0 V is applied across the inner and outer shells. Determine (a) the capacitance of the device, (b) the free charge q on the inner shell, and (c) the charge q induced along the surface of the inner shell.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Three concentric conducting spherical shells have radii a, b, and c such that a < b...
Three concentric conducting spherical shells have radii a, b, and c such that a < b < c. Initially the inner shell is uncharged, the middle shell has a positive charge +Q, and the outer shell has a negative charge –Q. (a) Find the electric potential of the three shells. (b) If the inner and outer shells are now connected by a wire that is insulated as it passes through the middle shell, what is the electric potential of each...
A spherical capacitor is composed of two thin, concentric conducting shells of radii R1 = 4.0cm...
A spherical capacitor is composed of two thin, concentric conducting shells of radii R1 = 4.0cm and R2 = 8.0cm. The plates are connected to a 12.0 V battery and are fully charged. a. Derive the equation for the capacitance and use it to determine the capacitance. b. Determine the total charge on the capacitor. c. The space between the plates is now filled with neoprene, increasing the total charge to 7.1E-10 C. What is the dielectric constant of neoprene?...
Suppose that you have two concentric spherical shells of radii a and b, with a<b. The...
Suppose that you have two concentric spherical shells of radii a and b, with a<b. The innershell has a charge−Qand the outer shell has a charge Q; the charges are uniformly distributed over each shell. a. Find the potential difference between the shells, going from the inner shell to the outershell. b. Now suppose that the shells are nearly the same size in the sense that b=a+d where d<<a. Write the leading behaviour of the potential difference in the limit...
1. Consider two concentric spherical conducting shells of radii a and b (b > a) kept...
1. Consider two concentric spherical conducting shells of radii a and b (b > a) kept at potentials V1 and V2, respectively. For the following parts, express all your answers in terms of V1, V2, a, and b. (a) Calculate the charges q1 and q2 on the two shells. (b) Calculate the potential in the region between the shells. (c) Calculate the work that needs to done to set up this charge configuration. (d) The shells are now connected to...
Consider two concentric spherical shells with different radii, namely one is inside the other. The spherical...
Consider two concentric spherical shells with different radii, namely one is inside the other. The spherical shell inside has radius R1 = 7.00 cm and charge q1 = +3.00×10^-6 C; the spherical shell outside has radius R2 = 17.0 cm and charge q2 = −5.00×10^-6 C. For both shells charges are distributed uniformly over their surfaces. Assume that V = 0 at large distances from both shells. A) Find the electric potential of the two shells at the distance r...
Two concentric spheres, spherical conducting shells have radii a and b and equal charges +Q. What...
Two concentric spheres, spherical conducting shells have radii a and b and equal charges +Q. What is the electric potential as a function of distance r in the region a < r < b?
a) By using Gauss’s law, find the electric field inside, outside and inbetween two concentric spherical...
a) By using Gauss’s law, find the electric field inside, outside and inbetween two concentric spherical metal shells, assuming that the inner shell, of radius a, carries a charge of -Q and the outer shell, of radius b, carries a charge of Q. b) By making use of the result in part (a), find the energy stored in the system made of two concentric spherical metal shells. c) By using the result in part (a) find the electric potential difference...
A small conducting spherical shell with inner radius a and outer radius b is concentric with...
A small conducting spherical shell with inner radius a and outer radius b is concentric with a larger conducting spherical shell with inner radius c and outer radius d. The inner shell has a total charge of -2q and the outer shell has a total charge of +4q .
A capacitor is formed from two concentric spherical conducting shells separated by vacuum. The inner sphere...
A capacitor is formed from two concentric spherical conducting shells separated by vacuum. The inner sphere has radius 11.0 cm , and the outer sphere has radius 15.5 cm cm . A potential difference of 110 V is applied to the capacitor. 1-What is the energy density at r= 11.1 cm , just outside the inner sphere? 2-What is the energy density at r = 15.4 cm , just inside the outer sphere? 3-For a parallel-plate capacitor the energy density...
Two long, charged, thin-walled, concentric cylindrical shells have radii of 1.22 and 11.47 cm. The charge...
Two long, charged, thin-walled, concentric cylindrical shells have radii of 1.22 and 11.47 cm. The charge per unit length is 3.55 × 10-6 C/m on the inner shell and 8.56 × 10-6 C/m on the outer shell. What is the magnitude electric field of E at a radial distance r = 6.39 cm??
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT