Question

A 5.0 kg toy-car moving with a speed of 10.0 m/s in +x direction collides with...

A 5.0 kg toy-car moving with a speed of 10.0 m/s in +x direction collides with a 7.0 kg toy truck moving with a velocity of 15.0 m/s in a direction 37 degrees above +x direction. What is the velocity, both the magnitude and direction, of the two objects after the collision, if they remain stuck together?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 1000-kg car moving north with a speed of 25.0 m/s collides with a 2000- kg...
A 1000-kg car moving north with a speed of 25.0 m/s collides with a 2000- kg truck moving at an angle of 30° north of west with a speed of 20.0 mjs. After the collision, the car and the truck stuck together. What is the magnitude of their common velocity after the collision?
A 900 kg car moving East with speed of 20 m/s collides with a 1500 kg...
A 900 kg car moving East with speed of 20 m/s collides with a 1500 kg car moving North with speed of 15 m/s at an intersection. Both cars stick together after collision. What is the speed and direction of these two stuck cars immediately after this collision?
A 2,500-kg car moving east at 10.0 m/s collides with a 3,000-kg car moving north. The...
A 2,500-kg car moving east at 10.0 m/s collides with a 3,000-kg car moving north. The cars stick together and move as a unit after the collision, at an angle of 35.0 degrees north of east and at a speed of 5.55 m/s. Find the speed of the 3,000-kg car before the collision. __________ m/s north
A 2500 kg car moving east at 10.0 m/s collides with a 3000 kg car moving...
A 2500 kg car moving east at 10.0 m/s collides with a 3000 kg car moving north. The cars stick together and move as a unit after the collision, at an angle of 47.0° north of east and at a speed of 6.66 m/s. Find the velocity of the 3000 kg car before the collision. m/s north
A 1000-kg sports car is moving north at speed 15 m/s on a level road when...
A 1000-kg sports car is moving north at speed 15 m/s on a level road when it collides with a 2000-kg truck driving east on the same road at speed 10 m/s. The two vehicles remain locked moving together after the collision at the origin of x-y plane. Assume that the rolling friction is too small to be ignored. A) explain what type of collision it is B) indicate the vector momentum by showing its magnitude and the (direction) angle...
A 1450-kg car moving east at 17.0 m/s collides with a 1850-kg car moving south at...
A 1450-kg car moving east at 17.0 m/s collides with a 1850-kg car moving south at 15.0 m/s, and the two cars connect together. What is the direction of the cars right after the collision? Enter the angle in degrees where positive indicates north of east and negative indicates south of east.
Mass #1 of 5.0 kg is moving at 2.0 m/s in the + x-direction, and collides...
Mass #1 of 5.0 kg is moving at 2.0 m/s in the + x-direction, and collides with mass #2 of 10. kg that is initially at rest, on a frictionless horizontal surface. They collide elastically. Find each velocity, after the collision.
A 4.34-kg toy car with a speed of 4.13 m/s collides with a stationary 1.00-kg car....
A 4.34-kg toy car with a speed of 4.13 m/s collides with a stationary 1.00-kg car. After the collision, the cars are locked together with a speed of 3.6 m/s. How much kinetic energy is lost in this collision?
A) A block of mass m1=6.0 kg is initially moving at 5.0 m/s to the right...
A) A block of mass m1=6.0 kg is initially moving at 5.0 m/s to the right and collides inelastically with an initially stationary block of mass m2=18.0 kg. The two objects become stuck together. Find the final velocity of the two blocks. B) A block of mass m1=6.0 kg is initially moving at 5.0 m/s to the right and collides elastically with an initially stationary block of mass m2=18.0 kg. After the collision, block m2 is moving to the right...
A 6.85 kg bowling ball moving at 10.0 m/s collides with a 1.60 kg bowling pin,...
A 6.85 kg bowling ball moving at 10.0 m/s collides with a 1.60 kg bowling pin, scattering it with a speed of 8.00 m/s and at an angle of 32.0° with respect to the initial direction of the bowling ball. ( a) Calculate the final velocity (magnitude in m/s and direction in degrees counterclockwise from the original direction) of the bowling ball. ______magnitude m/s __________direction ° counterclockwise from the original direction of the bowling ball (b) Ignoring rotation, what was...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT