Question

A 975-kg van decelerates to rest from a speed of 82.5 km/h in a distance of...

A 975-kg van decelerates to rest from a speed of 82.5 km/h in a distance of 150 m. Presume the van is initially traveling in the positive direction.

A )If the brakes are the only thing making the van come to a stop, calculate the force (in newtons, in a component along the direction of motion of the van) that the brakes apply on the van.

B) Suppose instead of braking that the van hits a concrete abutment at full speed and is brought to a stop in 2.00 m. Calculate the force, in newtons, exerted on the van in this case.

C) What is the ratio of the force on the van from the concrete to the braking force?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
(a) Calculate the force needed to bring a 1050 kg car to rest from a speed...
(a) Calculate the force needed to bring a 1050 kg car to rest from a speed of 95.0 km/h in a distance of 130 m (a fairly typical distance for a nonpanic stop). (b) Suppose instead the car hits a concrete abutment at full speed and is brought to a stop in 2.00 m. Calculate the force exerted on the car and compare it with the force found in part (a), i.e. find the ratio of the force in part(b)...
(a) Calculate the force needed to bring a 900 kg car to rest from a speed...
(a) Calculate the force needed to bring a 900 kg car to rest from a speed of 95.0 km/h in a distance of 105 m (a fairly typical distance for a nonpanic stop). (b) Suppose instead the car hits a concrete abutment at full speed and is brought to a stop in 2.00 m. Calculate the force exerted on the car and compare it with the force found in part (a), i.e. find the ratio of the force in part(b)...
A meteoroid of mass = 565 kg has a speed of 91.0 m/s when 900 km...
A meteoroid of mass = 565 kg has a speed of 91.0 m/s when 900 km above the Earth. It is falling vertically (ignore air resistance) and strikes a bed of sand in which it is brought to rest in 3.25 m. (a) How much work does the force of gravity do on the meteoroid on the way to the surface? Incorrect: Your answer is incorrect. GJ (b) What is the speed of the meteoroid just before striking the sand?...
When a high-speed passenger train traveling at vP = 153 km/h rounds a bend, the engineer...
When a high-speed passenger train traveling at vP = 153 km/h rounds a bend, the engineer is shocked to see that a locomotive has improperly entered onto the track from a siding and is a distance D = 847 m ahead (see the figure). The locomotive is moving at vL = 28 km/h. The engineer of the passenger train immediately applies the brakes. Assume that an x axis extends in the direction of motion. What must be the constant acceleration...
Find the speed [km/h] at which Superman (mass=85 kg) must fly into a train (mass =...
Find the speed [km/h] at which Superman (mass=85 kg) must fly into a train (mass = 19000 kg) traveling at 77 km/hr to stop it? A: 1.38×104 B: 1.72×104 C: 2.15×104 D: 2.69×104 E: 3.36×104 Tries 0/1 Running into the train at that speed would severely damage both train and passengers. Calculate the minimum time [s] Superman must take to stop the train, if the passengers experience an average acceleration of -0.44*g (g = 10 m/s2)? A: 1.59 B: 2.31...
3-A 1.0 kg block slides down an inclined plane of 39 0  from the horizontal. If the...
3-A 1.0 kg block slides down an inclined plane of 39 0  from the horizontal. If the block  starts from rest and hits the bottom in 5.1 s, what is the speed of the block, in the unit m/s, at the bottom of the incline? Assume a frictionless plane. 4-A bus negotiates a turn of radius 103 m while traveling at a speed of 92 km/h. If slipping just begins at this speed, what is the coefficient of static friction between the...
1. For a stationary ball of mass m = 0.200 kg hanging from a massless string,...
1. For a stationary ball of mass m = 0.200 kg hanging from a massless string, draw arrows (click on the “Shapes” tab) showing the forces acting on the ball (lengths can be arbitrary, but get the relative lengths of each force roughly correct). For this case of zero acceleration, use Newton’s 2nd law to find the magnitude of the tension force in the string, in units of Newtons. Since we will be considering motion in the horizontal xy plane,...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT